nctref/src/parse.c

1680 lines
42 KiB
C

#include"parse.h"
#include<assert.h>
#include<stdlib.h>
#include<string.h>
#include"utils.h"
#include"vartable.h"
#include"reporting.h"
#include<stdint.h>
#include<signal.h>
#include"x86.h"
#ifndef __GNUC__
static inline int __builtin_clzl(unsigned long x) {
unsigned long n = 32;
unsigned long y;
y = x >>16; if (y != 0) { n = n -16; x = y; }
y = x >> 8; if (y != 0) { n = n - 8; x = y; }
y = x >> 4; if (y != 0) { n = n - 4; x = y; }
y = x >> 2; if (y != 0) { n = n - 2; x = y; }
y = x >> 1; if (y != 0) return n - 2;
return n - x;
}
#endif
typedef struct {
Token *tokens;
intmax_t i;
Scope *scope;
// Used to coalesce all scopes into one after parsing, to perform global register allocation
ASTChunk *topLevel;
// Used by pushstat to add statements
ASTChunk *currentChunk;
// Used to place guard variable uses after loops to stop reg allocation from fucking up
Scope *loopScope;
size_t guardedVarCount;
ASTExprVar **guardedVars;
// Used for generating statements that load & store arguments
int isInFunction;
// Skim mode disables parsing function definitions
// This is needed to automatically forward-declare symbols
int skimMode;
// If this parser is for importing an external module, all symbols should become "extern"
int externalify;
} Parser;
static void *alloc_node(Parser *P, size_t sz) {
AST *a = calloc(1, sz);
a->row = P->tokens[P->i].row;
a->col = P->tokens[P->i].column;
return a;
}
static Token get(Parser *P) {
if(P->tokens[P->i].type == TOKEN_EOF) {
return P->tokens[P->i];
} else {
return P->tokens[P->i++];
}
}
static Token expect(Parser *P, TokenKind t) {
Token tok = get(P);
if(tok.type != t) {
stahp(tok.row, tok.column, "Expected %s, got %s.", TOKEN_NAMES[t], TOKEN_NAMES[tok.type]);
}
return tok;
}
static Token peek(Parser *P, int depth) {
int j = 0;
for(; j < depth; j++) {
if(P->tokens[P->i + j].type == TOKEN_EOF) {
break;
}
}
return P->tokens[P->i + j];
}
static int maybe(Parser *P, TokenKind t) {
if(peek(P, 0).type == t) {
get(P);
return 1;
}
return 0;
}
static void pushstat(Parser *P, void *a) {
if(P->currentChunk->statementFirst) {
P->currentChunk->statementLast->statement.next = a;
P->currentChunk->statementLast = a;
} else {
P->currentChunk->statementFirst = P->currentChunk->statementLast = a;
}
}
static ASTExprPrimitive *parse_prim(Parser *P) {
ASTExprPrimitive *ret = alloc_node(P, sizeof(*ret));
ret->nodeKind = AST_EXPR_PRIMITIVE;
Token tok = get(P);
const char *str = tok.content;
long base = 10;
if(strchr(str, 'r')) {
if(!unstupid_strtol(str, (char**) &str, 10, &base)) {
return NULL;
}
str++; /* Go past the r. */
}
long val;
if(!unstupid_strtol(str, NULL, base, &val)) {
return NULL;
}
ret->val = val;
// Smallest integer type to store number
char buf[8];
snprintf(buf, sizeof(buf), "s%i", ret->val ? (64 - __builtin_clzl(ret->val - 1)) : 1);
ret->type = (Type*) primitive_parse(buf);
return ret;
}
static AST *exprvar(Parser *P, ScopeItem *v) {
assert(v->kind != SCOPEITEM_TYPE);
AST *a = alloc_node(P, sizeof(ASTExprVar));
a->nodeKind = AST_EXPR_VAR;
a->exprVar.type = v->type;
a->exprVar.thing = v;
if(P->loopScope) {
// XXX: O(n)!!!!!!!!!
int inloop = 0;
for(Scope *vt = v->owner; vt; vt = vt->parent) {
if(vt->parent == P->loopScope) {
inloop = 1;
break;
}
}
if(!inloop) {
int alreadyAdded = 0;
for(size_t i = 0; i < P->guardedVarCount; i++) {
if(P->guardedVars[i]->thing == v) {
alreadyAdded = 1;
break;
}
}
if(!alreadyAdded) {
ASTExprVar *ev = alloc_node(P, sizeof(*ev));
memcpy(ev, a, sizeof(*ev));
P->guardedVars = realloc(P->guardedVars, sizeof(*P->guardedVars) * (P->guardedVarCount + 1));
P->guardedVars[P->guardedVarCount++] = ev;
}
}
}
return a;
}
ASTChunk *nct_parse_chunk(Parser*, int, int, Scope*, Type *ft);
Type *nct_parse_typename(Parser *P);
static bool parse_parametrization(Parser *P);
static char *parametrize_function_name(Type *t, const char *original, Scope *scope);
static void binop_implicit_cast(/*Parser *P, */ASTExprBinaryOp *binop) {
if(type_size(binop->operands[0]->expression.type) < type_size(binop->operands[1]->expression.type)) {
binop->operands[0] = ast_cast_expr(binop->operands[0], binop->operands[1]->expression.type);
}
if(type_size(binop->operands[1]->expression.type) < type_size(binop->operands[0]->expression.type)) {
binop->operands[1] = ast_cast_expr(binop->operands[1], binop->operands[0]->expression.type);
}
if(!binop->type) {
binop->type = binop->operands[0]->expression.type;
}
}
AST *nct_parse_expression(Parser *P, int lOP) {
if(lOP == 0) {
size_t startTokI = P->i;
// Test if this is an anonymous function
Type *ft = nct_parse_typename(P);
if(ft) {
assert(ft->type == TYPE_TYPE_FUNCTION);
ASTExprFunc *e = alloc_node(P, sizeof(*e));
e->nodeKind = AST_EXPR_FUNC;
e->type = ft;
if(type_is_generic(ft)) {
// Don't parse a generic function because the types are unavailable
size_t depth = 0;
while(1) {
TokenKind tk = get(P).type;
if(tk == TOKEN_SQUIGGLY_L) depth++;
else if(tk == TOKEN_SQUIGGLY_R) {
if(--depth == 0) {
break;
}
}
}
} else if(P->skimMode) {
// In skim mode, it won't be parsed normally anyway
} else {
expect(P, TOKEN_ARROW);
expect(P, TOKEN_SQUIGGLY_L);
P->isInFunction++;
e->chunk = (AST*) nct_parse_chunk(P, 1, 0, scope_new(P->scope), ft);
e->chunk->chunk.functionType = ft;
P->isInFunction--;
expect(P, TOKEN_SQUIGGLY_R);
}
e->scope = P->scope;
e->rangeTokens = P->tokens;
e->startTokI = startTokI;
e->endTokI = P->i;
return (AST*) e;
}
}
if(lOP == 6) {
AST *e = NULL;
if(peek(P, 0).type == TOKEN_NUMBER) {
e = (AST*) parse_prim(P);
} else if(peek(P, 0).type == TOKEN_IDENTIFIER) {
if(!strcmp(peek(P, 0).content, "@stack")) {
get(P);
ASTExprStackPointer *ret = alloc_node(P, sizeof(*ret));
ret->nodeKind = AST_EXPR_STACK_POINTER;
ret->type = primitive_parse("u32");
e = (AST*) ret;
} else if(!strcmp(peek(P, 0).content, "@salloc")) {
get(P);
expect(P, TOKEN_PAREN_L);
ASTExprExtSalloc *ret = alloc_node(P, sizeof(*ret));
ret->nodeKind = AST_EXPR_EXT_SALLOC;
ret->size = nct_parse_typename(P);
ret->type = type_pointer_wrap(ret->size);
expect(P, TOKEN_PAREN_R);
e = (AST*) ret;
} else if(!strcmp(peek(P, 0).content, "@sizeof")) {
get(P);
ASTExprExtSizeOf *ret = alloc_node(P, sizeof(*ret));
ret->nodeKind = AST_EXPR_EXT_SIZEOF;
ret->ofType = nct_parse_typename(P);
if(!ret->ofType) {
ret->ofExpr = nct_parse_expression(P, lOP - 1);
}
ret->type = primitive_parse("u32");
e = (AST*) ret;
} else {
Token varname = get(P);
ScopeItem *vte = scope_find(P->scope, varname.content);
if(!vte) {
stahp(varname.row, varname.column, "Unknown variable %s", varname.content);
}
e = (AST*) exprvar(P, vte);
}
} else if(peek(P, 0).type == TOKEN_STRING) {
ASTExprStringLiteral *ret = alloc_node(P, sizeof(*ret));
ret->nodeKind = AST_EXPR_STRING_LITERAL;
Token tok = get(P);
ret->type = &TYPE_ERROR;
ret->data = tok.content;
ret->length = tok.length;
e = (AST*) ret;
} else if(maybe(P, TOKEN_PAREN_L)) {
e = nct_parse_expression(P, 0);
expect(P, TOKEN_PAREN_R);
}
while(maybe(P, TOKEN_DOT)) {
assert(e->expression.type->type == TYPE_TYPE_RECORD);
Token fieldTok = expect(P, TOKEN_IDENTIFIER);
ASTExprDot *d = alloc_node(P, sizeof(*d));
d->nodeKind = AST_EXPR_DOT;
d->a = (AST*) e;
bool foundField = false;
for(size_t f = 0; f < e->expression.type->record.fieldCount; f++) {
char *fieldName = e->expression.type->record.fieldNames[f];
if(!strcmp(fieldName, fieldTok.content)) {
foundField = true;
d->type = e->expression.type->record.fieldTypes[f];
d->b = strdup(fieldName);
}
}
if(!foundField) {
stahp(fieldTok.row, fieldTok.column, "Field %s does not exist.", fieldTok.content);
}
e = (AST*) d;
}
return e;
} else if(lOP == 5) {
if(maybe(P, TOKEN_STAR)) {
ASTExprUnaryOp *astop = alloc_node(P, sizeof(*astop));
astop->nodeKind = AST_EXPR_UNARY_OP;
astop->operator = UNOP_DEREF;
astop->operand = nct_parse_expression(P, lOP); /* Not +1! */
astop->type = astop->operand->expression.type->pointer.of;
return (AST*) astop;
} else if(maybe(P, TOKEN_AMPERSAND)) {
ASTExprUnaryOp *astop = alloc_node(P, sizeof(*astop));
astop->nodeKind = AST_EXPR_UNARY_OP;
astop->operator = UNOP_REF;
astop->operand = nct_parse_expression(P, lOP);
astop->type = type_pointer_wrap(astop->operand->expression.type);
return (AST*) astop;
} else if(maybe(P, TOKEN_MINUS)) {
AST *operand = nct_parse_expression(P, lOP);
if(operand->nodeKind == AST_EXPR_PRIMITIVE) {
operand->exprPrim.val *= -1;
return operand;
} else {
ASTExprUnaryOp *astop = alloc_node(P, sizeof(*astop));
astop->nodeKind = AST_EXPR_UNARY_OP;
astop->operator = UNOP_NEGATE;
astop->operand = operand;
astop->type = operand->expression.type;
return (AST*) astop;
}
} else if(maybe(P, TOKEN_TILDE)) {
AST *child = nct_parse_expression(P, lOP);
if(child->nodeKind == AST_EXPR_PRIMITIVE) {
child->exprPrim.val = ~child->exprPrim.val;
return child;
} else {
ASTExprUnaryOp *astop = alloc_node(P, sizeof(*astop));
astop->nodeKind = AST_EXPR_UNARY_OP;
astop->operator = UNOP_BITWISE_NOT;
astop->operand = child;
astop->type = child->expression.type;
return (AST *) astop;
}
} else return nct_parse_expression(P, lOP + 1);
} else if(lOP == 4) {
AST *ret = nct_parse_expression(P, lOP + 1);
while(peek(P, 0).type == TOKEN_PAREN_L || peek(P, 0).type == TOKEN_SQUAREN_L) {
if(maybe(P, TOKEN_PAREN_L)) {
if(ret->expression.type->type != TYPE_TYPE_FUNCTION) {
stahp(P->tokens[P->i].row, P->tokens[P->i].column, "Only function types may be called.");
}
ASTExprCall *call = alloc_node(P, sizeof(*call));
call->nodeKind = AST_EXPR_CALL;
call->type = ret->expression.type->function.ret;
call->what = ret;
call->args = NULL;
int argCount = 0;
if(!maybe(P, TOKEN_PAREN_R)) {
while(peek(P, 0).type != TOKEN_PAREN_R && peek(P, 0).type != TOKEN_COMMA) {
call->args = realloc(call->args, (argCount + 1) * sizeof(AST*));
call->args[argCount] = ast_cast_expr(nct_parse_expression(P, 0), ret->expression.type->function.args[argCount]);
argCount++;
if(maybe(P, TOKEN_PAREN_R)) {
break;
} else expect(P, TOKEN_COMMA);
}
}
if(argCount != call->what->expression.type->function.argCount) {
stahp(P->tokens[P->i].row, P->tokens[P->i].column, "Mismatched number of arguments");
}
ret = (AST*) call;
} else if(peek(P, 0).type == TOKEN_SQUAREN_L) {
P->scope = scope_new(P->scope);
if(parse_parametrization(P)) {
// Generic type parametrization
// Generic functions are not first-class
assert(ret->nodeKind == AST_EXPR_VAR);
assert(ret->exprVar.thing != NULL);
assert(ret->exprVar.thing->kind == SCOPEITEM_SYMBOL);
char *cname = parametrize_function_name(ret->expression.type, ret->exprVar.thing->data.symbol.name, P->scope);
ScopeItem *cvte = scope_find(P->scope, cname);
if(!cvte) {
stahp_token(&P->tokens[P->i], "Parametrization %s not found.", cname);
}
ret = exprvar(P, cvte);
} else {
// Array access
expect(P, TOKEN_SQUAREN_L);
ASTExprUnaryOp *ref = alloc_node(P, sizeof(*ref));
ref->nodeKind = AST_EXPR_UNARY_OP;
ref->operator = UNOP_REF;
ref->operand = ret;
ref->type = type_pointer_wrap(ret->expression.type->array.of);
ASTExprBinaryOp *child = alloc_node(P, sizeof(*child));
child->nodeKind = AST_EXPR_BINARY_OP;
child->operands[0] = (AST*) ref;
child->operands[1] = nct_parse_expression(P, 0);
child->operator = BINOP_ADD;
child->type = ref->type;
if(ret->expression.type->type != TYPE_TYPE_ARRAY) {
stahp_token(&P->tokens[P->i], "Attempt to index a non-array type");
}
int typesize = type_size(ret->expression.type->array.of);
if(typesize != 1) {
ASTExprPrimitive *scale = alloc_node(P, sizeof(*scale));
scale->nodeKind = AST_EXPR_PRIMITIVE;
scale->type = primitive_parse("u32");
scale->val = typesize;
ASTExprBinaryOp *mul = alloc_node(P, sizeof(*mul));
mul->nodeKind = AST_EXPR_BINARY_OP;
mul->type = child->operands[1]->expression.type;
mul->operator = BINOP_MUL;
mul->operands[0] = (AST*) scale;
mul->operands[1] = child->operands[1];
child->operands[1] = (AST*) mul;
}
ASTExprUnaryOp *unop = alloc_node(P, sizeof(*unop));
unop->nodeKind = AST_EXPR_UNARY_OP;
unop->type = ret->expression.type->array.of;
unop->operator = UNOP_DEREF;
unop->operand = (AST*) child;
expect(P, TOKEN_SQUAREN_R);
ret = (AST*) unop;
}
P->scope = P->scope->parent;
} else abort();
}
return ret;
} else if(lOP == 3) {
AST *ret = nct_parse_expression(P, lOP + 1);
if(peek(P, 0).type == TOKEN_STAR || peek(P, 0).type == TOKEN_SLASH || peek(P, 0).type == TOKEN_STAR_CARET) {
while(1) {
BinaryOp op;
if(maybe(P, TOKEN_STAR)) op = BINOP_MUL;
else if(maybe(P, TOKEN_STAR_CARET)) op = BINOP_MULHI;
else if(maybe(P, TOKEN_SLASH)) op = BINOP_DIV;
else break;
ASTExprBinaryOp *astop = alloc_node(P, sizeof(*astop));
astop->nodeKind = AST_EXPR_BINARY_OP;
astop->type = ret->expression.type;
astop->operator = op;
astop->operands[0] = ret;
AST *operand = nct_parse_expression(P, lOP + 1);
if(operand->expression.type->type != TYPE_TYPE_PRIMITIVE) {
stahp_token(&P->tokens[P->i], "Invalid combination of operator and operand types.");
}
astop->operands[1] = operand;
if(!astop->type) {
astop->type = operand->expression.type;
} else {
if(type_size(operand->expression.type) > type_size(astop->type)) {
astop->type = operand->expression.type;
}
}
binop_implicit_cast(astop);
ret = (AST*) astop;
}
}
return ret;
} else if(lOP == 2) {
AST *ret = nct_parse_expression(P, lOP + 1);
if(
peek(P, 0).type == TOKEN_PLUS
|| peek(P, 0).type == TOKEN_MINUS
|| peek(P, 0).type == TOKEN_AMPERSAND
|| peek(P, 0).type == TOKEN_VERTICAL_BAR
|| peek(P, 0).type == TOKEN_CARET
) {
while(1) {
BinaryOp op;
if(maybe(P, TOKEN_PLUS)) op = BINOP_ADD;
else if(maybe(P, TOKEN_MINUS)) op = BINOP_SUB;
else if(maybe(P, TOKEN_AMPERSAND)) op = BINOP_BITWISE_AND;
else if(maybe(P, TOKEN_VERTICAL_BAR)) op = BINOP_BITWISE_OR;
else if(maybe(P, TOKEN_CARET)) op = BINOP_BITWISE_XOR;
else break;
ASTExprBinaryOp *astop = alloc_node(P, sizeof(*astop));
astop->nodeKind = AST_EXPR_BINARY_OP;
astop->type = NULL;
astop->operator = op;
astop->operands[0] = ret;
ASTExpr *operand = &(astop->operands[1] = nct_parse_expression(P, lOP + 1))->expression;
if(!type_is_number(astop->operands[0]->expression.type)
|| !type_is_number(astop->operands[1]->expression.type)) {
stahp_token(&P->tokens[P->i], "Attempt to perform arithmetic on non-number types.");
}
binop_implicit_cast(astop);
ret = (AST*) astop;
}
}
return ret;
} else if(lOP == 1) {
AST *ret = nct_parse_expression(P, lOP + 1);
while(maybe(P, TOKEN_AS)) {
Type *castTo = nct_parse_typename(P);
ret = ast_cast_expr(ret, castTo);
}
return ret;
} else if(lOP == 0) {
AST *ret = nct_parse_expression(P, lOP + 1);
if(peek(P, 0).type == TOKEN_DOUBLE_EQUALS || peek(P, 0).type == TOKEN_EXCLAMATION_EQUALS || peek(P, 0).type == TOKEN_LESS || peek(P, 0).type == TOKEN_GREATER || peek(P, 0).type == TOKEN_LEQUAL || peek(P, 0).type == TOKEN_GEQUAL) {
while(1) {
BinaryOp op;
if(maybe(P, TOKEN_DOUBLE_EQUALS)) op = BINOP_EQUAL;
else if(maybe(P, TOKEN_EXCLAMATION_EQUALS)) op = BINOP_NEQUAL;
else if(maybe(P, TOKEN_LESS)) op = BINOP_LESS;
else if(maybe(P, TOKEN_GREATER)) op = BINOP_GREATER;
else if(maybe(P, TOKEN_LEQUAL)) op = BINOP_LEQUAL;
else if(maybe(P, TOKEN_GEQUAL)) op = BINOP_GEQUAL;
else break;
ASTExprBinaryOp *astop = alloc_node(P, sizeof(*astop));
astop->nodeKind = AST_EXPR_BINARY_OP;
astop->type = NULL;
astop->operator = op;
astop->operands[0] = ret;
ASTExpr *operand = &(astop->operands[1] = nct_parse_expression(P, lOP + 1))->expression;
if(operand->type->type != TYPE_TYPE_PRIMITIVE) {
stahp_token(&P->tokens[P->i], "Invalid combination of operator and operand types.");
}
binop_implicit_cast(astop);
ret = (AST*) astop;
}
}
//ret = ast_expression_optimize(ret);
return ret;
}
#ifdef DEBUG
else abort();
#endif
return NULL;
}
// This function modifies the current scope.
// This function may backtrack.
static bool parse_parametrization(Parser *P) {
size_t oldIdx = P->i;
if(!maybe(P, TOKEN_SQUAREN_L)) {
goto backtrack;
}
intmax_t idx = 0;
bool integerMode = false;
while(1) {
if(maybe(P, TOKEN_SQUAREN_R)) {
break;
}
if(integerMode) {
AST *n = nct_parse_expression(P, 0);
if(!n) {
goto backtrack;
}
ScopeItem *vte = calloc(1, sizeof(*vte));
vte->kind = SCOPEITEM_CEXPR;
vte->type = n->expression.type;
vte->data.cexpr.concrete = n;
vte->data.cexpr.paramIdx = idx;
char buf[64];
snprintf(buf, sizeof(buf), "%li%s", idx, "i");
scope_set(P->scope, buf, vte);
} else {
Type *t = nct_parse_typename(P);
if(!t) {
goto backtrack;
}
ScopeItem *vte = calloc(1, sizeof(*vte));
vte->kind = SCOPEITEM_TYPE;
vte->type = t;
vte->data.type.ptr = t;
char buf[64];
snprintf(buf, sizeof(buf), "%li%s", idx, "t");
scope_set(P->scope, buf, vte);
}
idx++;
if(maybe(P, TOKEN_SQUAREN_R)) {
break;
}
if(maybe(P, TOKEN_SEMICOLON)) {
idx = 0;
integerMode = true;
} else if(!maybe(P, TOKEN_COMMA)) {
goto backtrack;
}
}
return true;
backtrack:
P->i = oldIdx;
return false;
}
/* Since this function backtracks, don't use aborting functions like expect. */
Type *nct_parse_typename(Parser *P) {
int oldIdx = P->i;
bool generics = peek(P, 0).type == TOKEN_SQUAREN_L;
if(generics) {
P->scope = scope_new(P->scope);
parse_genericization(P);
}
if(peek(P, 0).type != TOKEN_IDENTIFIER) {
goto backtrack;
}
Type *ret = NULL;
Token id = expect(P, TOKEN_IDENTIFIER);
ScopeItem *potentialVTE = scope_find(P->scope, id.content);
if(potentialVTE && potentialVTE->kind == SCOPEITEM_TYPE) {
ret = potentialVTE->data.type.ptr;
} else {
ret = (Type*) primitive_parse(id.content);
}
if(!ret) {
goto backtrack;
}
while(peek(P, 0).type == TOKEN_PAREN_L || peek(P, 0).type == TOKEN_STAR || peek(P, 0).type == TOKEN_SQUAREN_L) {
if(maybe(P, TOKEN_STAR)) {
TypePointer *ptr = calloc(1, sizeof(*ptr));
ptr->type = TYPE_TYPE_POINTER;
ptr->of = ret;
ret = (Type*) ptr;
} else if(maybe(P, TOKEN_PAREN_L)) {
TypeFunction *fun = calloc(1, sizeof(*fun));
fun->type = TYPE_TYPE_FUNCTION;
fun->ret = ret;
fun->argCount = 0;
fun->args = malloc(0);
if(!maybe(P, TOKEN_PAREN_R)) {
while(1) {
fun->argCount++;
fun->args = realloc(fun->args, sizeof(*fun->args) * fun->argCount);
fun->argNames = realloc(fun->argNames, sizeof(*fun->argNames) * fun->argCount);
if((fun->args[fun->argCount - 1] = nct_parse_typename(P)) == NULL) {
free(fun);
P->scope = P->scope->parent;
goto backtrack;
}
if(peek(P, 0).type == TOKEN_IDENTIFIER) {
fun->argNames[fun->argCount - 1] = get(P).content;
}
if(maybe(P, TOKEN_PAREN_R)) {
break;
} else expect(P, TOKEN_COMMA);
}
}
ret = (Type*) fun;
} else if(maybe(P, TOKEN_SQUAREN_L)) {
size_t oldIdx = P->i;
Type *t = nct_parse_typename(P);
P->i = oldIdx;
if(!t) {
TypeArray *arr = calloc(1, sizeof(*arr));
arr->type = TYPE_TYPE_ARRAY;
arr->of = ret;
if(peek(P, 0).type == TOKEN_NUMBER) {
ASTExprPrimitive *prim = parse_prim(P);
arr->length = prim->val;
free(prim);
} else if(maybe(P, TOKEN_QUESTION_MARK)) {
arr->length = -1;
} else if(peek(P, 0).type == TOKEN_IDENTIFIER) {
const char *what = expect(P, TOKEN_IDENTIFIER).content;
ScopeItem *vte = scope_find(P->scope, what);
if(!vte) {
goto backtrack;
}
if(vte->kind != SCOPEITEM_CEXPR) {
stahp_token(&P->tokens[P->i], "Variable '%s' is not constant.", what);
}
if(vte->data.cexpr.concrete) {
AST *n = vte->data.cexpr.concrete;
assert(n->nodeKind == AST_EXPR_PRIMITIVE);
arr->length = n->exprPrim.val;
arr->lengthIsGeneric = false;
} else {
arr->length = 0;
arr->lengthIsGeneric = true;
arr->lengthGenericParamIdx = 0; // TODO: SHIT
arr->lengthGenericParamName = strdup(what);
}
} else {
stahp_token(&P->tokens[P->i], "Array length must be either constant, generic or '?' (1).");
}
ret = (Type*) arr;
expect(P, TOKEN_SQUAREN_R);
} else {
assert(ret->type == TYPE_TYPE_RECORD);
P->i--;
P->scope = scope_new(P->scope);
assert(parse_parametrization(P));
ret = type_parametrize(ret, P->scope);
P->scope = P->scope->parent;
}
}
}
if(generics) {
P->scope = P->scope->parent;
}
return ret;
backtrack:
if(generics) {
P->scope = P->scope->parent;
}
P->i = oldIdx;
return NULL;
}
/* Potentially backtracking. Returns NULL upon failure. */
static AST *parse_declaration(Parser *P) {
int oldIdx = P->i;
int isLocal = maybe(P, TOKEN_LOCAL);
int isExternal = 0;
if(!isLocal) {
isExternal = maybe(P, TOKEN_EXTERN);
}
Type *type = nct_parse_typename(P);
if(!type && (peek(P, 0).type != TOKEN_IDENTIFIER || peek(P, 1).type != TOKEN_COLON)) goto backtrack;
if(peek(P, 0).type != TOKEN_IDENTIFIER) goto backtrack;
Token name = expect(P, TOKEN_IDENTIFIER);
ScopeItem *entry;
if(peek(P, 0).type == TOKEN_COLON && (entry = scope_get(P->scope, name.content))) {
/* Forward declared. */
} else {
entry = calloc(sizeof(*entry), 1);
entry->type = type;
}
AST *ret = NULL;
if(maybe(P, TOKEN_EQUALS) || (peek(P, 0).type == TOKEN_SEMICOLON && !isExternal && !isLocal)) {
if(isExternal || isLocal) {
stahp(name.row, name.column, "'local' and 'extern' keywords are to be used for symbol declaration only.");
return NULL;
}
entry->kind = SCOPEITEM_VAR;
entry->data.var.priority = 1;
entry->data.var.color = -1;
ASTStmtAssign *assign = alloc_node(P, sizeof(*assign));
assign->nodeKind = AST_STMT_ASSIGN;
assign->next = NULL;
//entry->data.var.reachingDefs = reachingdefs_push(NULL);
//reachingdefs_set(entry->data.var.reachingDefs, (AST*) assign);
assign->what = exprvar(P, entry);
assign->to = peek(P, 0).type == TOKEN_SEMICOLON ? NULL : ast_cast_expr(nct_parse_expression(P, 0), assign->what->expression.type);
ret = (AST*) assign;
} else {
ASTStmtDecl *decl = alloc_node(P, sizeof(*ret));
decl->nodeKind = AST_STMT_DECL;
decl->thing = entry;
decl->next = NULL;
if(maybe(P, TOKEN_COLON)) {
if(isExternal) {
fputs("External symbols may not be defined.\n", stderr);
abort();
return NULL;
}
entry->kind = SCOPEITEM_SYMBOL;
entry->data.symbol.isLocal = P->externalify ? false : isLocal;
entry->data.symbol.isExternal = P->externalify ? true : isExternal;
entry->data.symbol.name = name.content;
decl->expression = nct_parse_expression(P, 0);
if(type) {
if(decl->expression) {
decl->expression = ast_cast_expr(decl->expression, type);
}
} else {
entry->type = decl->expression->expression.type;
}
if(decl->expression && decl->expression->nodeKind == AST_EXPR_FUNC && type_is_generic(decl->expression->expression.type)) {
entry->data.symbol.genfunc.scope = decl->expression->exprFunc.scope;
entry->data.symbol.genfunc.rangeTokens = decl->expression->exprFunc.rangeTokens;
entry->data.symbol.genfunc.startTokI = decl->expression->exprFunc.startTokI;
entry->data.symbol.genfunc.endTokI = decl->expression->exprFunc.endTokI;
}
} else if(isExternal) {
entry->kind = SCOPEITEM_SYMBOL;
entry->data.symbol.isLocal = isLocal;
entry->data.symbol.isExternal = isExternal;
entry->data.symbol.name = name.content;
} else {
abort();
}
ret = (AST*) decl;
}
scope_set(P->scope, name.content, entry);
if(P->skimMode) {
// In skim mode parsing is not done normally
} else {
expect(P, TOKEN_SEMICOLON);
}
return ret;
backtrack:
P->i = oldIdx;
return NULL;
}
static char *plus_underscore(char *s, char *ts) {
size_t strlens = strlen(s);
s = realloc(s, strlens + strlen(ts) + 2);
memset(s + strlens, 0, strlen(ts) + 2);
strcat(s, ts);
s[strlen(s)] = '_';
return s;
}
static char *parametrize_function_name(Type *t, const char *original, Scope *scope) {
char *s = calloc(1, strlen(original) + 1 + 1);
strcpy(s, original);
s[strlen(original)] = '_';
for(int i = 0;; i++) {
char vtename[64];
snprintf(vtename, sizeof(vtename), "%it", i);
// scope_get, NOT SCOPE_FIND!
ScopeItem *vte = scope_get(scope, vtename);
if(!vte) break;
assert(vte->kind == SCOPEITEM_TYPE);
s = plus_underscore(s, type_to_string(vte->data.type.ptr));
}
for(int i = 0;; i++) {
char vtename[64];
snprintf(vtename, sizeof(vtename), "%ii", i);
// scope_get, NOT SCOPE_FIND!
ScopeItem *vte = scope_get(scope, vtename);
if(!vte) break;
assert(vte->kind == SCOPEITEM_CEXPR);
assert(vte->data.cexpr.concrete);
assert(vte->data.cexpr.concrete->nodeKind == AST_EXPR_PRIMITIVE);
char numstr[32];
snprintf(numstr, sizeof(numstr), "%i", vte->data.cexpr.concrete->exprPrim.val);
s = plus_underscore(s, numstr);
}
// Remove last underscore
s[strlen(s) - 1] = '\0';
return s;
}
/*static void add_parametrizations_to_scope(Parser *P, Parametrizations *parametrizations, Parametrizations *renames) {
Parametrization *c = parametrizations->typeParams;
Parametrization *g = renames->typeParams;
while(c && g) {
Type *ct = (Type*) c->param;
Type *gt = (Type*) g->param;
assert(!!ct == !!gt);
ScopeItem *vte = calloc(1, sizeof(*vte));
vte->kind = SCOPEITEM_TYPE;
vte->data.type.ptr = ct;
scope_set(P->scope, gt->generic.paramName, vte);
c = c->next;
g = g->next;
}
size_t idx = 0;
c = parametrizations->intParams;
g = renames->intParams;
while(c && g) {
AST *node = c->param;
char *name = g->param;
assert(!!node == !!name);
ScopeItem *vte = calloc(1, sizeof(*vte));
vte->kind = SCOPEITEM_CEXPR;
vte->data.cexpr.paramIdx = idx;
vte->data.cexpr.paramName = name;
vte->data.cexpr.concrete = node;
scope_set(P->scope, name, vte);
c = c->next;
g = g->next;
idx++;
}
}*/
void nct_parse_statement(Parser *P) {
if(maybe(P, TOKEN_IF)) {
expect(P, TOKEN_PAREN_L);
AST *e = nct_parse_expression(P, 0);
expect(P, TOKEN_PAREN_R);
ASTStmtIf *ret = alloc_node(P, sizeof(*ret));
ret->nodeKind = AST_STMT_IF;
ret->next = NULL;
ret->expression = e;
pushstat(P, ret);
expect(P, TOKEN_SQUIGGLY_L);
ret->then = (AST*) nct_parse_chunk(P, 0, 0, NULL, NULL);
expect(P, TOKEN_SQUIGGLY_R);
return;
} else if(maybe(P, TOKEN_LOOP)) {
ASTStmtLoop *ret = alloc_node(P, sizeof(*ret));
ret->nodeKind = AST_STMT_LOOP;
ret->next = NULL;
int isFirstLoop = P->loopScope == NULL;
if(isFirstLoop) {
P->loopScope = P->scope;
}
expect(P, TOKEN_SQUIGGLY_L);
ret->body = (AST*) nct_parse_chunk(P, 0, 1, NULL, NULL);
expect(P, TOKEN_SQUIGGLY_R);
pushstat(P, ret);
if(isFirstLoop) {
P->loopScope = NULL;
for(size_t i = 0; i < P->guardedVarCount; i++) {
ASTExprVar *ev = P->guardedVars[i];
AST *es = alloc_node(P, sizeof(ASTStmtExpr));
es->nodeKind = AST_STMT_EXPR;
es->stmtExpr.expr = (AST*) ev;
pushstat(P, es);
}
P->guardedVarCount = 0;
free(P->guardedVars);
P->guardedVars = NULL;
}
return;
} else if(maybe(P, TOKEN_BREAK)) {
ASTStmtBreak *ret = alloc_node(P, sizeof(*ret));
ret->nodeKind = AST_STMT_BREAK;
ret->next = NULL;
expect(P, TOKEN_SEMICOLON);
pushstat(P, ret);
return;
} else if(maybe(P, TOKEN_CONTINUE)) {
ASTStmtContinue *ret = alloc_node(P, sizeof(*ret));
ret->nodeKind = AST_STMT_CONTINUE;
ret->next = NULL;
expect(P, TOKEN_SEMICOLON);
pushstat(P, ret);
return;
} else if(maybe(P, TOKEN_RETURN)) {
ASTStmtReturn *ret = alloc_node(P, sizeof(*ret));
ret->nodeKind = AST_STMT_RETURN;
ret->next = NULL;
if(!maybe(P, TOKEN_SEMICOLON)) {
ret->val = nct_parse_expression(P, 0);
expect(P, TOKEN_SEMICOLON);
}
pushstat(P, ret);
return;
} else if(maybe(P, TOKEN_RECORD)) {
// Do nothing. This is handled in nct_parse_chunk.
expect(P, TOKEN_IDENTIFIER);
while(get(P).type != TOKEN_SQUIGGLY_L);
size_t depth = 1;
while(1) {
TokenKind tk = get(P).type;
if(tk == TOKEN_SQUIGGLY_L) {
depth++;
} else if(tk == TOKEN_SQUIGGLY_R) {
depth--;
if(depth == 0) {
break;
}
}
}
return;
} else if(maybe(P, TOKEN_USE)) {
while(get(P).type != TOKEN_SEMICOLON);
return;
} else if(peek(P, 0).type == TOKEN_IDENTIFIER) {
if(!strcmp(peek(P, 0).content, "@align")) {
ASTStmtExtAlign *ret = alloc_node(P, sizeof(*ret));
ret->nodeKind = AST_STMT_EXT_ALIGN;
ret->next = NULL;
get(P);
expect(P, TOKEN_PAREN_L);
ASTExprPrimitive *val = parse_prim(P);
ret->val = val->val;
free(val);
expect(P, TOKEN_PAREN_R);
expect(P, TOKEN_SEMICOLON);
pushstat(P, ret);
return;
} else if(!strcmp(peek(P, 0).content, "@org")) {
ASTStmtExtOrg *ret = alloc_node(P, sizeof(*ret));
ret->nodeKind = AST_STMT_EXT_ORG;
ret->next = NULL;
get(P);
expect(P, TOKEN_PAREN_L);
ASTExprPrimitive *val = parse_prim(P);
ret->val = val->val;
free(val);
expect(P, TOKEN_PAREN_R);
expect(P, TOKEN_SEMICOLON);
pushstat(P, ret);
return;
} else if(!strcmp(peek(P, 0).content, "@section")) {
ASTStmtExtSection *ret = alloc_node(P, sizeof(*ret));
ret->nodeKind = AST_STMT_EXT_SECTION;
ret->next = NULL;
get(P);
expect(P, TOKEN_PAREN_L);
ret->name = expect(P, TOKEN_STRING);
expect(P, TOKEN_PAREN_R);
expect(P, TOKEN_SEMICOLON);
pushstat(P, ret);
return;
} else if(!strcmp(peek(P, 0).content, "@instantiate")) {
get(P);
Token funcname = expect(P, TOKEN_IDENTIFIER);
ScopeItem *func = scope_find(P->scope, funcname.content);
if(!func) {
stahp_token(&P->tokens[P->i], "Cannot find function %s for parametrization.", funcname.content);
}
assert(type_is_generic(func->type));
Scope *oldScope = P->scope;
P->scope = scope_new(oldScope);
assert(parse_parametrization(P));
P->scope->parent = func->data.symbol.genfunc.scope;
Type *parametrizedFuncType = type_parametrize(func->type, P->scope);
size_t oldIdx = P->i;
Token *oldTokens = P->tokens;
P->tokens = func->data.symbol.genfunc.rangeTokens;
P->i = func->data.symbol.genfunc.startTokI;
expect(P, TOKEN_SQUAREN_L);
intmax_t paramIdx = 0;
bool integerMode = false;
while(1) {
if(maybe(P, TOKEN_SQUAREN_R)) {
break;
}
char vtename[64];
snprintf(vtename, sizeof(vtename), integerMode ? "%lii" : "%lit", paramIdx++);
ScopeItem *src = scope_get(P->scope, vtename);
assert(src != NULL);
scope_set(P->scope, expect(P, TOKEN_IDENTIFIER).content, src);
if(maybe(P, TOKEN_SEMICOLON)) {
paramIdx = 0;
integerMode = true;
} else {
if(maybe(P, TOKEN_SQUAREN_R)) {
break;
}
expect(P, TOKEN_COMMA);
}
}
// Parse without the genericizing [...] because we've just parsed it ourselves and set the necessary VTEs
AST *concreteFunction = nct_parse_expression(P, 0);
assert(concreteFunction->nodeKind == AST_EXPR_FUNC);
P->i = oldIdx;
P->tokens = oldTokens;
ScopeItem *vte = calloc(1, sizeof(*vte));
vte->kind = SCOPEITEM_SYMBOL;
vte->type = parametrizedFuncType;
vte->data.symbol.name = parametrize_function_name(func->type, func->data.symbol.name, P->scope);
vte->data.symbol.isExternal = false;
vte->data.symbol.isLocal = false;
// Important order (remove parametrizations from scope, then add parametrized function to global)
P->scope = oldScope;
scope_set(P->scope, vte->data.symbol.name, vte);
ASTStmtDecl *decl = alloc_node(P, sizeof(*decl));
decl->nodeKind = AST_STMT_DECL;
decl->thing = vte;
decl->expression = concreteFunction;
pushstat(P, (AST*) decl);
expect(P, TOKEN_SEMICOLON);
return;
}
}
{
AST *decl = parse_declaration(P);
if(decl) {
if(decl->nodeKind == AST_STMT_DECL) {
if(decl->stmtDecl.thing->kind == SCOPEITEM_SYMBOL && decl->stmtDecl.thing->data.symbol.isExternal) {
P->topLevel->externs = realloc(P->topLevel->externs, sizeof(*P->topLevel->externs) * (++P->topLevel->externCount));
P->topLevel->externs[P->topLevel->externCount - 1] = decl->stmtDecl.thing;
}
}
// Don't pass declaration statements for generic functions, because they're useless
if(decl->nodeKind != AST_STMT_DECL || !type_is_generic(decl->stmtDecl.thing->type)) {
pushstat(P, decl);
}
return;
}
}
AST *e = nct_parse_expression(P, 0);
if(maybe(P, TOKEN_EQUALS)) {
ASTStmtAssign *ret = alloc_node(P, sizeof(*ret));
ret->nodeKind = AST_STMT_ASSIGN;
ret->next = NULL;
ret->what = e;
ret->to = ast_cast_expr(nct_parse_expression(P, 0), ret->what->expression.type);
//if(ret->what->nodeKind == AST_EXPR_VAR) {
// reachingdefs_set(ret->what->exprVar.thing->data.var.reachingDefs, (AST*) ret);
//}
expect(P, TOKEN_SEMICOLON);
pushstat(P, ret);
return;
} else {
ASTStmtExpr *ret = alloc_node(P, sizeof(*ret));
ret->nodeKind = AST_STMT_EXPR;
ret->next = NULL;
ret->expr = e;
expect(P, TOKEN_SEMICOLON);
pushstat(P, ret);
return;
}
}
/*
* This function inserts VTEs into the *current* scope.
* Make sure to create a child scope before using.
* */
void parse_genericization(Parser *P) {
expect(P, TOKEN_SQUAREN_L);
bool integerMode = false;
size_t nextIdx = 0;
while(peek(P, 0).type == TOKEN_IDENTIFIER) {
if(!integerMode) {
Type *tg = calloc(1, sizeof(TypeGeneric));
tg->type = TYPE_TYPE_GENERIC;
tg->generic.paramName = strdup(get(P).content);
tg->generic.paramIdx = nextIdx;
ScopeItem *vte = calloc(1, sizeof(*vte));
vte->kind = SCOPEITEM_TYPE;
vte->data.type.ptr = tg;
scope_set(P->scope, strdup(tg->generic.paramName), vte);
} else {
ScopeItem *vte = calloc(1, sizeof(*vte));
vte->type = primitive_parse("u32");
vte->kind = SCOPEITEM_CEXPR;
vte->data.cexpr.paramName = strdup(get(P).content);
vte->data.cexpr.paramIdx = nextIdx;
scope_set(P->scope, strdup(vte->data.var.name), vte);
}
nextIdx++;
if(maybe(P, TOKEN_SQUAREN_R)) {
break;
}
if(maybe(P, TOKEN_SEMICOLON)) {
integerMode = true;
nextIdx = 0;
} else {
expect(P, TOKEN_COMMA);
}
if(maybe(P, TOKEN_SQUAREN_R)) {
break;
}
}
}
Type *nct_parse_record_definition(Parser *P) {
expect(P, TOKEN_RECORD);
P->scope = scope_new(P->scope);
Token name = expect(P, TOKEN_IDENTIFIER);
Type *tr = calloc(1, sizeof(TypeRecord));
tr->type = TYPE_TYPE_RECORD;
tr->record.name = strdup(name.content);
if(maybe(P, TOKEN_SQUAREN_L)) {
P->i--;
parse_genericization(P);
}
expect(P, TOKEN_SQUIGGLY_L);
size_t nextOffset = 0;
while(peek(P, 0).type != TOKEN_SQUIGGLY_R) {
if(peek(P, 0).type == TOKEN_NUMBER) {
ASTExprPrimitive *explicitOffset = parse_prim(P);
nextOffset = explicitOffset->val;
free(explicitOffset);
expect(P, TOKEN_COLON);
}
size_t fi = tr->record.fieldCount++;
tr->record.fieldOffsets = realloc(tr->record.fieldOffsets, sizeof(*tr->record.fieldOffsets) * tr->record.fieldCount);
tr->record.fieldTypes = realloc(tr->record.fieldTypes, sizeof(*tr->record.fieldTypes) * tr->record.fieldCount);
tr->record.fieldNames = realloc(tr->record.fieldNames, sizeof(*tr->record.fieldNames) * tr->record.fieldCount);
Type *fieldType = nct_parse_typename(P);
Token fieldName = expect(P, TOKEN_IDENTIFIER);
tr->record.fieldTypes[fi] = fieldType;
tr->record.fieldNames[fi] = strdup(fieldName.content);
tr->record.fieldOffsets[fi] = nextOffset;
if(type_is_generic(tr->record.fieldTypes[fi])) {
// Hope nothing goes wrong.
// Field offsets must be regenerated later
} else {
nextOffset += type_size(tr->record.fieldTypes[fi]);
}
expect(P, TOKEN_SEMICOLON);
}
expect(P, TOKEN_SQUIGGLY_R);
P->scope = P->scope->parent;
return tr;
}
static void skim_chunk(Parser *P, int isTopLevel) {
/* Find all symbol names and struct types ahead of time. Searches for colons as those can only mean symbol declarations */
P->skimMode++;
{
intmax_t oldIdx = P->i;
while(1) {
TokenKind k = get(P).type;
if(k == (isTopLevel ? TOKEN_EOF : TOKEN_SQUIGGLY_R)) {
break;
} else if(k == TOKEN_SQUIGGLY_L) { /* Don't enter deeper scopes. */
int depth = 0;
while(1) {
switch(get(P).type) {
case TOKEN_SQUIGGLY_L: depth++; break;
case TOKEN_SQUIGGLY_R: if(depth-- == 0) goto stomp; break;
default:;
}
}
stomp:;
} else if(k == TOKEN_COLON || k == TOKEN_EXTERN) {
/* Move back to beginning of declaration. */
if(k == TOKEN_COLON) {
int squarenDepth = 0;
do {
P->i--;
if(P->tokens[P->i].type == TOKEN_SQUAREN_R) {
squarenDepth++;
} else if(P->tokens[P->i].type == TOKEN_SQUAREN_L) {
squarenDepth--;
}
} while(squarenDepth != 0 || (P->i >= oldIdx && P->tokens[P->i].type != TOKEN_SEMICOLON && P->tokens[P->i].type != TOKEN_SQUIGGLY_R && P->tokens[P->i].type != TOKEN_SQUIGGLY_L));
P->i++;
} else {
P->i--;
}
AST *d = parse_declaration(P);
if(!d) abort();
free(d); /* We don't need it. */
} else if(k == TOKEN_RECORD) {
P->i--;
Type *tr = nct_parse_record_definition(P);
ScopeItem *vte = calloc(1, sizeof(*vte));
vte->kind = SCOPEITEM_TYPE;
vte->data.type.ptr = tr;
scope_set(P->scope, tr->record.name, vte);
} else if(k == TOKEN_USE) {
char *path = malp("%s", expect(P, TOKEN_IDENTIFIER).content);
for(;;) {
if(maybe(P, TOKEN_SEMICOLON)) {
break;
}
expect(P, TOKEN_DOT);
char *path2 = malp("%s/%s", path, expect(P, TOKEN_IDENTIFIER).content);
free(path);
path = path2;
}
FILE *f = NULL;
for(const char **importPaths = ntc_get_import_paths(); *importPaths; importPaths++) {
char *path2 = malp("tests/%s.nct", path);
f = fopen(path2, "rb");
free(path2);
if(f) {
// Importee found
break;
}
}
if(!f) {
stahp_token(&P->tokens[P->i], "Module %s not found", path);
}
free(path);
Parser subp = {.tokens = nct_lex(f), .scope = scope_new(NULL), .externalify = 1};
skim_chunk(&subp, 1);
// Copy all extern symbols from the scope into our TLC's externs array
for(size_t i = 0; i < subp.scope->count; i++) {
ScopeItem *vte = subp.scope->data[i];
if(vte->kind == SCOPEITEM_SYMBOL && vte->data.symbol.isExternal) {
P->topLevel->externs = realloc(P->topLevel->externs, sizeof(*P->topLevel->externs) * (++P->topLevel->externCount));
P->topLevel->externs[P->topLevel->externCount - 1] = vte;
}
}
subp.scope->parent = P->scope;
scope_merge(subp.scope);
// free(subp.tokens); DO THIS CANNOT
fclose(f);
}
}
P->i = oldIdx;
}
P->skimMode--;
}
ASTChunk *nct_parse_chunk(Parser *P, int isTopLevel, int varPrioritize, Scope *toplevelParent, Type *ft) {
AST *ret = alloc_node(P, sizeof(ASTChunk));
ret->nodeKind = AST_CHUNK;
ret->chunk.statementFirst = ret->chunk.statementLast = NULL;
ret->chunk.varCount = 0;
ret->chunk.vars = NULL;
ret->chunk.stackReservation = 0;
AST *oldChunk = (AST*) P->currentChunk;
P->currentChunk = &ret->chunk;
Scope *oldScope = P->scope;
P->scope = isTopLevel ? toplevelParent : scope_new(oldScope);
ASTChunk *oldTopLevel = P->topLevel;
if(isTopLevel) {
P->topLevel = &ret->chunk;
}
skim_chunk(P, isTopLevel);
/* Arguments */
if(ft && isTopLevel) {
ScopeItem **vtes = alloca(sizeof(*vtes) * ft->function.argCount);
// First arguments in a function TLC is the arguments
for(int i = 0; i < ft->function.argCount; i++) {
ScopeItem *vte = calloc(1, sizeof(*vte));
vte->kind = SCOPEITEM_VAR;
vte->type = ft->function.args[i];
vte->data.var.name = ft->function.argNames[i];
vte->data.var.color = -1;
scope_set(toplevelParent, vte->data.var.name, vte);
vtes[i] = vte;
}
}
/* Now actual parsing. */
while(peek(P, 0).type != TOKEN_EOF && peek(P, 0).type != TOKEN_SQUIGGLY_R) {
nct_parse_statement(P);
}
// Add all variables used in this chunk into the TLC's variable list
size_t varsToAdd = 0;
for(size_t i = 0; i < P->scope->count; i++) {
if(P->scope->data[i]->kind == SCOPEITEM_VAR) {
varsToAdd++;
}
}
P->topLevel->vars = realloc(P->topLevel->vars, sizeof(*P->topLevel->vars) * (P->topLevel->varCount + varsToAdd));
// This makes sure function arguments stay first in the array
memmove(P->topLevel->vars + varsToAdd, P->topLevel->vars, sizeof(*P->topLevel->vars) * P->topLevel->varCount);
for(size_t i = 0, n = 0; i < P->scope->count; i++) {
if(P->scope->data[i]->kind == SCOPEITEM_VAR) {
P->topLevel->vars[n++] = P->scope->data[i];
P->topLevel->varCount++;
}
}
P->scope = oldScope;
P->currentChunk = oldChunk;
if(isTopLevel) {
P->topLevel = oldTopLevel;
}
return &ret->chunk;
}
AST *nct_parse(Token *tokens) {
Parser P;
memset(&P, 0, sizeof(P));
P.tokens = tokens;
return (AST*) nct_parse_chunk(&P, 1, 0, scope_new(NULL), NULL);
}