nctref/src/ast.c
2025-05-03 10:00:20 +03:00

904 lines
26 KiB
C

#include"ast.h"
#include<stdint.h>
#include<string.h>
#include<stdlib.h>
#include<assert.h>
#include<stdarg.h>
const char *AST_KIND_STR[] = {
AST_KINDS(GEN_STRI)
};
void generic_visitor(AST **nptr, AST *stmt, AST *stmtPrev, AST *chu, AST *tlc, void *ud, GenericVisitorHandler preHandler, GenericVisitorHandler postHandler) {
if(preHandler) preHandler(nptr, stmt, stmtPrev, chu, tlc, ud);
AST *n = *nptr;
if(n->nodeKind == AST_CHUNK) {
AST *sPrev = NULL;
AST **s = &n->chunk.statementFirst;
while(*s) {
generic_visitor(s, *s, sPrev, n, tlc, ud, preHandler, postHandler);
sPrev = *s;
s = &sPrev->statement.next;
}
} else if(n->nodeKind == AST_STMT_ASSIGN) {
generic_visitor(&n->stmtAssign.what, stmt, stmtPrev, chu, tlc, ud, preHandler, postHandler);
if(n->stmtAssign.to) {
generic_visitor(&n->stmtAssign.to, stmt, stmtPrev, chu, tlc, ud, preHandler, postHandler);
}
} else if(n->nodeKind == AST_STMT_IF) {
generic_visitor(&n->stmtIf.expression, stmt, stmtPrev, chu, tlc, ud, preHandler, postHandler);
generic_visitor(&n->stmtIf.then, stmt, stmtPrev, chu, tlc, ud, preHandler, postHandler);
} else if(n->nodeKind == AST_STMT_LOOP) {
generic_visitor(&n->stmtLoop.body, stmt, stmtPrev, chu, tlc, ud, preHandler, postHandler);
} else if(n->nodeKind == AST_STMT_BREAK) {
} else if(n->nodeKind == AST_STMT_CONTINUE) {
} else if(n->nodeKind == AST_STMT_EXT_ALIGN) {
} else if(n->nodeKind == AST_STMT_DECL) {
if(n->stmtDecl.expression) {
generic_visitor(&n->stmtDecl.expression, stmt, stmtPrev, chu, tlc, ud, preHandler, postHandler);
}
} else if(n->nodeKind == AST_STMT_EXPR) {
generic_visitor(&n->stmtExpr.expr, stmt, stmtPrev, chu, tlc, ud, preHandler, postHandler);
} else if(n->nodeKind == AST_STMT_EXT_ORG) {
} else if(n->nodeKind == AST_STMT_EXT_SECTION) {
} else if(n->nodeKind == AST_STMT_RETURN) {
if(n->stmtReturn.val) {
generic_visitor(&n->stmtReturn.val, stmt, stmtPrev, chu, tlc, ud, preHandler, postHandler);
}
} else if(n->nodeKind == AST_EXPR_BINARY_OP) {
generic_visitor(&n->exprBinOp.operands[0], stmt, stmtPrev, chu, tlc, ud, preHandler, postHandler);
generic_visitor(&n->exprBinOp.operands[1], stmt, stmtPrev, chu, tlc, ud, preHandler, postHandler);
} else if(n->nodeKind == AST_EXPR_CALL) {
generic_visitor(&n->exprCall.what, stmt, stmtPrev, chu, tlc, ud, preHandler, postHandler);
for(size_t i = 0; i < n->exprCall.what->expression.type->function.argCount; i++) {
generic_visitor(&n->exprCall.args[i], stmt, stmtPrev, chu, tlc, ud, preHandler, postHandler);
}
} else if(n->nodeKind == AST_EXPR_CAST) {
generic_visitor(&n->exprCast.what, stmt, stmtPrev, chu, tlc, ud, preHandler, postHandler);
} else if(n->nodeKind == AST_EXPR_FUNC) {
generic_visitor(&n->exprFunc.chunk, NULL, NULL, n->exprFunc.chunk, n->exprFunc.chunk, ud, preHandler, postHandler);
} else if(n->nodeKind == AST_EXPR_UNARY_OP) {
generic_visitor(&n->exprUnOp.operand, stmt, stmtPrev, chu, tlc, ud, preHandler, postHandler);
} else if(n->nodeKind == AST_EXPR_VAR) {
} else if(n->nodeKind == AST_EXPR_STACK_POINTER) {
} else if(n->nodeKind == AST_EXPR_PRIMITIVE) {
} else if(n->nodeKind == AST_EXPR_STRING_LITERAL) {
} else if(n->nodeKind == AST_EXPR_ARRAY) {
assert(n->expression.type->type == TYPE_TYPE_ARRAY);
assert(n->expression.type->array.length != 0);
for(size_t i = 0; i < n->expression.type->array.length; i++) {
generic_visitor(&n->exprArray.items[i], stmt, stmtPrev, chu, tlc, ud, preHandler, postHandler);
}
} else if(n->nodeKind == AST_EXPR_EXT_SALLOC) {
} else if(n->nodeKind == AST_EXPR_DOT) {
generic_visitor(&n->exprDot.a, stmt, stmtPrev, chu, tlc, ud, preHandler, postHandler);
} else {
abort();
}
if(postHandler) postHandler(nptr, stmt, stmtPrev, chu, tlc, ud);
}
int ast_expression_equal(AST *a, AST *b) {
if(a->nodeKind != b->nodeKind) return 0;
if(a->nodeKind == AST_EXPR_PRIMITIVE) {
return a->exprPrim.val == b->exprPrim.val;
} else if(a->nodeKind == AST_EXPR_VAR) {
return a->exprVar.thing == b->exprVar.thing;
} else if(a->nodeKind == AST_EXPR_UNARY_OP) {
return a->exprUnOp.operator == b->exprUnOp.operator && ast_expression_equal(a->exprUnOp.operand, b->exprUnOp.operand);
} else if(a->nodeKind == AST_EXPR_BINARY_OP) {
return a->exprBinOp.operator == b->exprBinOp.operator && ast_expression_equal(a->exprBinOp.operands[0], b->exprBinOp.operands[0]) && ast_expression_equal(a->exprBinOp.operands[1], b->exprBinOp.operands[1]);
} else if(a->nodeKind == AST_EXPR_STACK_POINTER) {
return 1;
} else if(a->nodeKind == AST_EXPR_CAST) {
return ast_expression_equal(a->exprCast.what, b->exprCast.what) && type_equal(a->exprCast.to, b->exprCast.to) && a->exprCast.reinterpretation == b->exprCast.reinterpretation;
} else {
stahp_node(a, "ast_expression_equal: unhandled %s", AST_KIND_STR[a->nodeKind]);
}
}
// This function may return three values: YES (1), NO (0) or UNKNOWN (-1).
// ... Ew
int ast_stmt_is_after(const AST *chunk, const AST *s1, const AST *s2) {
const AST *s = chunk->chunk.statementFirst;
while(1) {
if(s && s->nodeKind == AST_STMT_LOOP) {
int i = ast_stmt_is_after(s->stmtLoop.body, s1, s2);
if(i != -1) {
return i;
}
}
if(s == s1) {
return 0;
}
if(s == s2) {
return 1;
}
if(!s) break;
if(s->nodeKind == AST_STMT_IF) {
int i = ast_stmt_is_after(s->stmtIf.then, s1, s2);
if(i != -1) {
return i;
}
}
s = s->statement.next;
}
return -1;
}
/*
* This pass is necessary for the purposes of optimization and regalloc.
* Because an AST may hold outdated UD-chains, this pass MUST be called
* before using the UD-chains to make sure they are valid.
*
* Each local var (VTE of kind VARTABLEENTRY_VAR) holds its own UD-chain
* that specifies the exact nodes in the AST where:
* 1. It is used
* 2. The whole statement in which it is used
* 3. The definition that *might* be in use
*
* Because multiple definitions may be in use (reachable) at the point
* of the use, a unique UseDef for each possible definition is appended
* to the chain.
*
* Reachable definitions are kept track in a ReachingDefs, also held by
* each VTE. In the case of a single, simple block of code, we know
* exactly one definition (including undefined) can reach each variable,
* which would simplify the ReachingDefs structure to a single
* definition pointer.
*
* Unfortunately, conditional blocks and loops ruin this simplicity.
* If you have code like
* x = A
* if B {
* x = C
* }
* then afterward two definitions may apply to x.
*
* A solution here is to lay ReachingDefs as a graph, with each
* ReachingDefs having an optional parent. When we enter a new block of
* code, we create an empty ReachingDefs with the previous block as its
* parent. Any definitions replace the ones in the deepest
* ReachingDefs only.
*
* How we exit a block depends on its type. If it is conditional,
* the reaching definitions should join the parent (mergedefs).
* If the block is a loop, it is even worse. Given
* x = A
* loop {
* use x
* x = B
* }
* definitions can apply to uses that come before it!
*
* Also, a different case:
* x = A
* loop {
* use x
* y = B
* }
* Because, technically, the last use of x is before y = B, y and x may
* be assigned the same physical location, corrupting data as a result.
* To fix this, fake, "useless" statements are inserted during parsing
* that make the AST look as such:
* x = A
* loop {
* use x
* y = B
* }
* x;
* Until dead code removal is implemented, this will not be a problem.
*/
static void rawadduse(VarTableEntry *vte, UseDef *ud) {
assert(vte->kind == VARTABLEENTRY_VAR);
assert(ud->next == NULL);
assert(!!vte->data.var.usedefFirst == !!vte->data.var.usedefLast);
if(!vte->data.var.usedefFirst) {
vte->data.var.usedefFirst = vte->data.var.usedefLast = ud;
} else {
vte->data.var.usedefLast->next = ud;
vte->data.var.usedefLast = ud;
}
}
static void adduse(VarTableEntry *vte, AST *use, AST *whole) {
assert(vte->kind == VARTABLEENTRY_VAR);
assert(vte->data.var.reachingDefs != NULL);
ReachingDefs *rd = vte->data.var.reachingDefs;
while(rd && rd->defCount == 0) rd = rd->parent;
if(!rd) return;
for(size_t d = 0; d < rd->defCount; d++) {
UseDef *ud = calloc(1, sizeof(*ud));
ud->def = rd->defs[d];
ud->use = use;
ud->stmt = whole;
ud->next = NULL;
rawadduse(vte, ud);
}
}
static void overwritedefs(VarTableEntry *vte, AST *def) {
assert(vte->kind == VARTABLEENTRY_VAR);
if(!vte->data.var.reachingDefs) {
vte->data.var.reachingDefs = calloc(1, sizeof(*vte->data.var.reachingDefs));
}
vte->data.var.reachingDefs->defCount = 1;
if(!vte->data.var.reachingDefs->defs) {
vte->data.var.reachingDefs->defs = calloc(1, sizeof(*vte->data.var.reachingDefs->defs));
}
vte->data.var.reachingDefs->defs[0] = def;
}
static void mergedefs(VarTableEntry *vte) {
assert(vte->kind == VARTABLEENTRY_VAR);
ReachingDefs *rdefs = vte->data.var.reachingDefs;
assert(rdefs != NULL);
assert(rdefs->parent != NULL);
rdefs->parent->defs = realloc(rdefs->parent->defs, sizeof(*rdefs->parent->defs) * (rdefs->parent->defCount + rdefs->defCount));
memcpy(rdefs->parent->defs + rdefs->parent->defCount, rdefs->defs, rdefs->defCount * sizeof(*rdefs->defs));
vte->data.var.reachingDefs = rdefs->parent;
free(rdefs->defs);
free(rdefs);
}
static void pushdefs(VarTableEntry *vte) {
assert(vte->kind == VARTABLEENTRY_VAR);
ReachingDefs *rdefs = calloc(1, sizeof(*rdefs));
rdefs->defCount = 0;
rdefs->defs = NULL;
rdefs->excludeParent = 0;
rdefs->parent = vte->data.var.reachingDefs;
vte->data.var.reachingDefs = rdefs;
}
static void pushdefsall(AST *tlc) {
for(size_t i = 0; i < tlc->chunk.varCount; i++) {
pushdefs(tlc->chunk.vars[i]);
}
}
static void mergedefsall(AST *tlc) {
for(size_t i = 0; i < tlc->chunk.varCount; i++) {
mergedefs(tlc->chunk.vars[i]);
}
}
static void mergedefsloop(AST *tlc, VarTableEntry *vte, AST *daLoopStmt) {
assert(vte->kind == VARTABLEENTRY_VAR);
for(size_t d = 0; d < vte->data.var.reachingDefs->defCount; d++) {
UseDef *ud = vte->data.var.usedefFirst;
while(ud) {
if(ast_stmt_is_after(daLoopStmt->stmtLoop.body, NULL, ud->stmt) == 1 && ud->def != vte->data.var.reachingDefs->defs[d]) {
UseDef *udnew = calloc(1, sizeof(*udnew));
udnew->next = ud->next;
ud->next = udnew;
udnew->def = vte->data.var.reachingDefs->defs[d];
udnew->use = ud->use;
udnew->stmt = ud->stmt;
if(udnew->next == NULL) {
vte->data.var.usedefLast = udnew;
}
}
ud = ud->next;
}
}
mergedefs(vte);
}
static void mergedefsloopall(AST *tlc, AST *daLoopStmt) {
for(size_t i = 0; i < tlc->chunk.varCount; i++) {
mergedefsloop(tlc, tlc->chunk.vars[i], daLoopStmt);
}
}
static void ast_usedef_pass(AST *tlc, AST *a, AST *wholestmt) {
if(a->nodeKind == AST_CHUNK) {
for(AST *s = a->chunk.statementFirst; s; s = s->statement.next) {
ast_usedef_pass(tlc, s, s);
}
} else if(a->nodeKind == AST_STMT_IF) {
pushdefsall(tlc);
ast_usedef_pass(tlc, a->stmtIf.expression, wholestmt);
ast_usedef_pass(tlc, a->stmtIf.then, wholestmt);
mergedefsall(tlc);
} else if(a->nodeKind == AST_STMT_LOOP) {
pushdefsall(tlc);
ast_usedef_pass(tlc, a->stmtLoop.body, wholestmt);
mergedefsloopall(tlc, a);
} else if(a->nodeKind == AST_STMT_ASSIGN) {
if(a->stmtAssign.what->nodeKind == AST_EXPR_VAR && a->stmtAssign.what->exprVar.thing->kind == VARTABLEENTRY_VAR) {
overwritedefs(a->stmtAssign.what->exprVar.thing, a);
}
ast_usedef_pass(tlc, a->stmtAssign.what, wholestmt);
if(a->stmtAssign.to) {
ast_usedef_pass(tlc, a->stmtAssign.to, wholestmt);
}
} else if(a->nodeKind == AST_STMT_EXPR) {
ast_usedef_pass(tlc, a->stmtExpr.expr, wholestmt);
} else if(a->nodeKind == AST_EXPR_VAR) {
if(a->exprVar.thing->kind == VARTABLEENTRY_VAR) {
adduse(a->exprVar.thing, a, wholestmt);
}
} else if(a->nodeKind == AST_EXPR_BINARY_OP) {
ast_usedef_pass(tlc, a->exprBinOp.operands[0], wholestmt);
ast_usedef_pass(tlc, a->exprBinOp.operands[1], wholestmt);
} else if(a->nodeKind == AST_EXPR_UNARY_OP) {
ast_usedef_pass(tlc, a->exprUnOp.operand, wholestmt);
} else if(a->nodeKind == AST_EXPR_CALL) {
ast_usedef_pass(tlc, a->exprCall.what, wholestmt);
for(size_t p = 0; p < a->exprCall.what->expression.type->function.argCount; p++) {
ast_usedef_pass(tlc, a->exprCall.args[p], wholestmt);
}
} else if(a->nodeKind == AST_EXPR_PRIMITIVE) {
} else if(a->nodeKind == AST_EXPR_STRING_LITERAL) {
} else if(a->nodeKind == AST_EXPR_CAST) {
ast_usedef_pass(tlc, a->exprCast.what, wholestmt);
} else if(a->nodeKind == AST_EXPR_STACK_POINTER) {
} else if(a->nodeKind == AST_EXPR_EXT_SALLOC) {
} else if(a->nodeKind == AST_STMT_BREAK) {
} else if(a->nodeKind == AST_STMT_CONTINUE) {
} else if(a->nodeKind == AST_STMT_EXT_ALIGN) {
} else if(a->nodeKind == AST_STMT_EXT_ORG) {
} else if(a->nodeKind == AST_STMT_EXT_SECTION) {
} else if(a->nodeKind == AST_STMT_DECL) {
assert(a->stmtDecl.thing->kind != VARTABLEENTRY_VAR || a->stmtDecl.expression);
} else if(a->nodeKind == AST_STMT_RETURN) {
if(a->stmtReturn.val) {
ast_usedef_pass(tlc, a->stmtReturn.val, wholestmt);
}
} else {
abort();
}
}
void ast_usedef_reset(AST *chu) {
for(size_t i = 0; i < chu->chunk.varCount; i++) {
VarTableEntry *vte = chu->chunk.vars[i];
assert(vte->kind == VARTABLEENTRY_VAR);
vte->data.var.reachingDefs = NULL;
vte->data.var.usedefFirst = NULL;
vte->data.var.usedefLast = NULL;
}
pushdefsall(chu);
return ast_usedef_pass(chu, chu, NULL);
}
static char *cat(char *a, const char *b) {
if(!a) {
return strdup(b);
}
a = realloc(a, strlen(a) + strlen(b) + 1);
strcpy(a + strlen(a), b);
return a;
}
__attribute__((format(printf, 1, 2))) char *malp(const char *fmt, ...) {
va_list v1, v2;
va_start(v1, fmt);
va_copy(v2, v1);
size_t len = vsnprintf(NULL, 0, fmt, v1);
va_end(v1);
va_start(v2, fmt);
char *str = malloc(len + 1);
vsnprintf(str, len + 1, fmt, v2);
str[len] = 0;
va_end(v2);
return str;
}
char *type_to_string(Type *t) {
if(t->type == TYPE_TYPE_PRIMITIVE) {
char ret[16] = {};
int i = 0;
ret[i++] = t->primitive.isFloat ? 'f' : (t->primitive.isUnsigned ? 'u' : 'i');
snprintf(ret + i, sizeof(ret) - i, "%i", t->primitive.width);
return strdup(ret);
} else if(t->type == TYPE_TYPE_POINTER) {
char *c = type_to_string(t->pointer.of);
char *r = malp("%s*", c);
free(c);
return r;
} else if(t->type == TYPE_TYPE_RECORD) {
return malp("%s", t->record.name);
} else if(t->type == TYPE_TYPE_GENERIC) {
return malp("%s", t->generic.paramName);
} else if(t->type == TYPE_TYPE_ARRAY) {
char *of = type_to_string(t->array.of);
char *len = NULL;
if(t->array.lengthIsGeneric) {
len = malp("");
} else {
len = malp("%i", t->array.length);
}
char *r = malp("%s[%s]", of, len);
free(of);
free(len);
return r;
}
return strdup("@unimp");
}
static char *ast_dumpe(AST *e) {
if(e->nodeKind == AST_EXPR_PRIMITIVE) {
return malp("%i", e->exprPrim.val);
} else if(e->nodeKind == AST_EXPR_VAR) {
VarTableEntry *vte = e->exprVar.thing;
if(vte->kind == VARTABLEENTRY_VAR) {
return strdup(vte->data.var.name);
} else if(vte->kind == VARTABLEENTRY_SYMBOL) {
return strdup(vte->data.symbol.name);
} else abort();
} else if(e->nodeKind == AST_EXPR_UNARY_OP) {
const char *op = NULL;
switch(e->exprUnOp.operator) {
case UNOP_REF:
op = "&";
break;
case UNOP_DEREF:
op = "*";
break;
case UNOP_BITWISE_NOT:
op = "~";
break;
case UNOP_NEGATE:
op = "-";
break;
default:
abort();
}
char *c = ast_dumpe(e->exprUnOp.operand);
char *r = malp("%s%s", op, c);
free(c);
return r;
} else if(e->nodeKind == AST_EXPR_BINARY_OP) {
char *a = ast_dumpe(e->exprBinOp.operands[0]);
char *b = ast_dumpe(e->exprBinOp.operands[1]);
const char *op;
switch(e->exprBinOp.operator) {
case BINOP_ADD:
op = "+";
break;
case BINOP_SUB:
op = "-";
break;
case BINOP_MUL:
op = "*";
break;
case BINOP_DIV:
op = "/";
break;
case BINOP_BITWISE_AND:
op = "&";
break;
case BINOP_BITWISE_OR:
op = "|";
break;
case BINOP_BITWISE_XOR:
op = "^";
break;
case BINOP_EQUAL:
op = "==";
break;
case BINOP_NEQUAL:
op = "!=";
break;
case BINOP_LESS:
op = "<";
break;
case BINOP_GREATER:
op = ">";
break;
case BINOP_LEQUAL:
op = "<=";
break;
case BINOP_GEQUAL:
op = ">=";
break;
case BINOP_MULHI:
op = "*^";
break;
default:
abort();
}
char *r = malp("(%s %s %s)", a, op, b);
free(a);
free(b);
return r;
} else if(e->nodeKind == AST_EXPR_STACK_POINTER) {
return malp("@stack");
} else if(e->nodeKind == AST_EXPR_FUNC) {
char *out = NULL;
if(type_is_generic(e->expression.type)) {
out = malp("(generic)");
return out;
}
{
char *rettype = type_to_string(e->expression.type->function.ret);
out = malp("%s(", rettype);
free(rettype);
}
for(int i = 0; i < e->expression.type->function.argCount; i++) {
char *argtype = type_to_string(e->expression.type->function.args[i]);
char *out2 = malp(i == e->expression.type->function.argCount - 1 ? "%s%s" : "%s%s, ", out, argtype);
free(out);
free(argtype);
out = out2;
}
{
char *choonk = ast_dump(e->exprFunc.chunk);
char *out2 = malp("%s) {\n%s}", out, choonk);
free(out);
free(choonk);
out = out2;
}
return out;
} else if(e->nodeKind == AST_EXPR_CALL) {
char *w = ast_dumpe(e->exprCall.what);
char *out = malp("%s(", w);
free(w);
size_t argCount = e->exprCall.what->expression.type->function.argCount;
for(size_t i = 0; i < argCount; i++) {
char *a = ast_dumpe(e->exprCall.args[i]);
char *out2 = malp(i == argCount - 1 ? "%s%s)" : "%s%s, ", out, a);
free(a);
free(out);
out = out2;
}
return out;
} else if(e->nodeKind == AST_EXPR_EXT_SALLOC) {
char *w = type_to_string(e->exprExtSalloc.size);
char *out = malp("@salloc(%s)", w);
free(w);
return out;
} else if(e->nodeKind == AST_EXPR_CAST) {
char *a = ast_dumpe(e->exprCast.what);
char *b = type_to_string(e->exprCast.to);
char *out = malp("(%s as %s)", a, b);
free(a);
free(b);
return out;
} else if(e->nodeKind == AST_EXPR_DOT) {
char *a = ast_dumpe(e->exprDot.a);
char *out = malp(e->nodeKind == AST_EXPR_BINARY_OP ? "(%s).%s" : "%s.%s", a, e->exprDot.b);
free(a);
return out;
}
return malp("@unimp:%s", AST_KIND_STR[e->nodeKind]);
}
char *ast_dump(AST *tlc);
static char *ast_dumps(AST *s) {
if(s->nodeKind == AST_STMT_DECL) {
VarTableEntry *vte = s->stmtDecl.thing;
if(vte->kind == VARTABLEENTRY_SYMBOL) {
char *t = type_to_string(vte->type);
char *e = s->stmtDecl.expression ? ast_dumpe(s->stmtDecl.expression) : strdup("");
char *r = malp("%s%s %s: %s;\n", vte->data.symbol.isExternal ? "external " : "", t, vte->data.symbol.name, e);
free(t);
free(e);
return r;
}
} else if(s->nodeKind == AST_STMT_ASSIGN) {
if(s->stmtAssign.to) {
char *a = ast_dumpe(s->stmtAssign.what);
char *b = ast_dumpe(s->stmtAssign.to);
char *r = malp("%s = %s;\n", a, b);
free(a);
free(b);
return r;
} else {
char *a = ast_dumpe(s->stmtAssign.what);
char *r = malp("%s = ; /* fake def */\n", a);
free(a);
return r;
}
} else if(s->nodeKind == AST_STMT_LOOP) {
char *inner = ast_dump(s->stmtLoop.body);
char *c = malp("loop {\n%s}\n", inner);
free(inner);
return c;
} else if(s->nodeKind == AST_STMT_IF) {
char *cond = ast_dumpe(s->stmtIf.expression);
char *inner = ast_dump(s->stmtIf.then);
char *c = malp("if(%s) {\n%s}\n", cond, inner);
free(cond);
free(inner);
return c;
} else if(s->nodeKind == AST_STMT_EXPR && s->stmtExpr.expr->nodeKind == AST_EXPR_VAR) {
const char *name;
if(s->stmtExpr.expr->exprVar.thing->kind == VARTABLEENTRY_VAR) {
name = s->stmtExpr.expr->exprVar.thing->data.var.name;
} else {
name = s->stmtExpr.expr->exprVar.thing->data.symbol.name;
}
return malp("%s; /* loop guard */\n", name);
} else if(s->nodeKind == AST_STMT_EXPR) {
return ast_dumpe(s->stmtExpr.expr);
} else if(s->nodeKind == AST_STMT_RETURN) {
if(s->stmtReturn.val) {
char *e = ast_dumpe(s->stmtReturn.val);
char *c = malp("return %s;\n", e);
free(e);
return c;
} else {
return malp("return;\n");
}
}
return malp("@unimp:%s\n", AST_KIND_STR[s->nodeKind]);
}
char *ast_dump(AST *tlc) {
AST *stmt = tlc->chunk.statementFirst;
char *ret = strdup("");
#define CAT(s) do { char *b = s; ret = cat(ret, (b)); free(b); } while(0)
while(stmt) {
CAT(ast_dumps(stmt));
stmt = stmt->statement.next;
}
return ret;
}
static void *memdup(void *a, size_t len) {
void *r = malloc(len);
memcpy(r, a, len);
return r;
}
AST *ast_deep_copy(AST *src) {
if(src->nodeKind == AST_EXPR_VAR) {
return memdup(src, sizeof(ASTExprVar));
} else if(src->nodeKind == AST_EXPR_PRIMITIVE) {
return memdup(src, sizeof(ASTExprPrimitive));
}
abort();
}
AST *ast_cast_expr(AST *what, Type *to) {
if(what == NULL) goto fail;
/* Only exists at parse-time, hence not part of type system and is handled separately */
if(what->nodeKind == AST_EXPR_STRING_LITERAL) {
if(to->type == TYPE_TYPE_ARRAY && type_equal(primitive_parse("u8"), to->array.of) && to->array.length == what->exprStrLit.length) {
ASTExprArray *ret = calloc(1, sizeof(*ret));
ret->nodeKind = AST_EXPR_ARRAY;
ret->items = calloc(to->array.length, sizeof(*ret->items));
ret->type = to;
for(int i = 0; i < to->array.length; i++) {
uint8_t bajt = what->exprStrLit.data[i];
ASTExprPrimitive *item = calloc(1, sizeof(*item));
item->nodeKind = AST_EXPR_PRIMITIVE;
item->type = to->array.of;
item->val = bajt;
ret->items[i] = (AST*) item;
}
return (AST*) ret;
} else if(to->type == TYPE_TYPE_PRIMITIVE) {
if(to->primitive.width != what->exprStrLit.length * 8) {
stahp_node(what, "Size mismatch between string literal and target type");
}
ASTExprPrimitive *ret = calloc(1, sizeof(*ret));
ret->nodeKind = AST_EXPR_PRIMITIVE;
ret->type = to;
memcpy(&ret->val, what->exprStrLit.data, sizeof(ret->val));
return (AST*) ret;
} else abort();
}
// Make sure an unparametrized generic int parameter hasn't sneaked its way in
while(what->nodeKind == AST_EXPR_VAR && what->exprVar.thing->kind == VARTABLEENTRY_CEXPR && what->exprVar.thing->data.cexpr.concrete) {
what = what->exprVar.thing->data.cexpr.concrete;
}
assert(!(what->nodeKind == AST_EXPR_VAR && what->exprVar.thing->kind == VARTABLEENTRY_CEXPR));
if(type_equal(what->expression.type, to)) return what;
if(!type_is_castable(what->expression.type, to)) {
goto fail;
}
if(what->nodeKind == AST_EXPR_PRIMITIVE && (to->type == TYPE_TYPE_PRIMITIVE || to->type == TYPE_TYPE_POINTER)) {
ASTExprPrimitive *ret = calloc(1, sizeof(*ret));
ret->nodeKind = AST_EXPR_PRIMITIVE;
ret->type = to;
if(to->type == TYPE_TYPE_PRIMITIVE) {
ret->val = what->exprPrim.val & ((1UL << to->primitive.width) - 1);
} else {
ret->val = what->exprPrim.val & ((1UL << (8 * type_size(to))) - 1);
}
return (AST*) ret;
} else {
ASTExprCast *ret = calloc(1, sizeof(*ret));
ret->nodeKind = AST_EXPR_CAST;
ret->type = to;
ret->what = what;
ret->to = to;
return (AST*) ret;
}
fail:
stahp_node(what, "Cannot cast type %s into %s", type_to_string(what->expression.type), type_to_string(to));
}
struct Spill2StackState {
AST *targetTLC;
VarTableEntry *target;
size_t stackGrowth;
};
static void spill2stack_visitor(AST **aptr, AST *stmt, AST *stmtPrev, AST *chunk, AST *tlc, void *ud) {
struct Spill2StackState *this = ud;
if(tlc != this->targetTLC) {
// Don't do anything.
return;
}
AST *a = *aptr;
if(a == tlc) {
a->chunk.stackReservation += this->stackGrowth;
} else if(a->nodeKind == AST_EXPR_VAR) {
if(a->exprVar.thing == this->target) {
// DO THE SPILL
ASTExprStackPointer *rsp = calloc(1, sizeof(*rsp));
rsp->nodeKind = AST_EXPR_STACK_POINTER;
rsp->type = primitive_parse("u32");
ASTExprPrimitive *offset = calloc(1, sizeof(*offset));
offset->nodeKind = AST_EXPR_PRIMITIVE;
offset->type = rsp->type;
offset->val = -this->stackGrowth; // This will be affected by the other part of this pass, so we must reverse
ASTExprBinaryOp *bop = calloc(1, sizeof(*bop));
bop->nodeKind = AST_EXPR_BINARY_OP;
bop->type = rsp->type;
bop->operator = BINOP_ADD;
bop->operands[0] = (AST*) rsp;
bop->operands[1] = (AST*) offset;
ASTExprUnaryOp *deref = calloc(1, sizeof(*deref));
deref->nodeKind = AST_EXPR_UNARY_OP;
deref->type = a->expression.type;
deref->operator = UNOP_DEREF;
deref->operand = (AST*) bop;
*aptr = (AST*) deref;
}
} else if(a->nodeKind == AST_EXPR_BINARY_OP && a->exprBinOp.operands[0]->nodeKind == AST_EXPR_STACK_POINTER && a->exprBinOp.operands[1]->nodeKind == AST_EXPR_PRIMITIVE) {
// Guaranteed to not require more dumbification
a->exprBinOp.operands[1]->exprPrim.val += this->stackGrowth;
}
}
void ast_spill_to_stack(AST *tlc, VarTableEntry *vte) {
assert(tlc->nodeKind == AST_CHUNK);
assert(vte != NULL);
assert(vte->kind == VARTABLEENTRY_VAR);
fprintf(stderr, "Spilling %s to stack...\n", vte->data.var.name);
struct Spill2StackState state;
memset(&state, 0, sizeof(state));
state.target = vte;
state.targetTLC = tlc;
state.stackGrowth = (type_size(vte->type) + 7) & ~7;
generic_visitor(&tlc, NULL, NULL, tlc, tlc, &state, spill2stack_visitor, NULL);
}
static void typecheck_visitor(AST **aptr, AST *stmt, AST *stmtPrev, AST *chunk, AST *tlc, void *ud) {
AST *a = *aptr;
if(a->nodeKind == AST_EXPR_CALL) {
if(a->exprCall.what->expression.type != TYPE_TYPE_FUNCTION) {
stahp_node(a, "Only function types may be called.");
}
} else if(a->nodeKind == AST_EXPR_BINARY_OP) {
if(!type_is_number(a->exprBinOp.operands[0]) || !type_is_number(a->exprBinOp.operands[1])) {
stahp_node(a, "Operands must be numbers.");
}
if(type_size(a->exprBinOp.operands[0]->expression.type) < type_size(a->exprBinOp.operands[1]->expression.type)) {
a->exprBinOp.operands[0] = ast_cast_expr(a->exprBinOp.operands[0], a->exprBinOp.operands[1]->expression.type);
}
if(type_size(a->exprBinOp.operands[1]->expression.type) < type_size(a->exprBinOp.operands[0]->expression.type)) {
a->exprBinOp.operands[1] = ast_cast_expr(a->exprBinOp.operands[1], a->exprBinOp.operands[0]->expression.type);
}
if(!a->exprBinOp.type) {
a->exprBinOp.type = a->exprBinOp.operands[0]->expression.type;
}
} else if(a->nodeKind == AST_EXPR_UNARY_OP) {
}
}
void ast_type_check(AST *tlc, VarTableEntry *vte) {
generic_visitor(&tlc, NULL, NULL, tlc, tlc, NULL, NULL, typecheck_visitor);
}