Compare commits

..

No commits in common. "07f6d57aba440bf3086d87c832ad7d91eb121078" and "9c89bfbdafc08e3a4692043abe5f46e3b13093ac" have entirely different histories.

21 changed files with 90 additions and 718 deletions

View File

@ -9,7 +9,7 @@ PREFIX = /usr/local
ntc: $(SOURCES) $(HEADERS)
ifdef OW
wcl386 -ml $(if $(GAS),-DSYNTAX_GAS=1,) $(if $(DEBUG),-DDEBUG=1,) -fe="ntc.exe" -bt=dos -l=dos4g -ml $(if $(DEBUG),,-d0 -os -om -ob -oi -ol -ox) -lr -za99 -i=src $(SOURCES)
wcl $(if $(GAS),-DSYNTAX_GAS=1,) $(if $(DEBUG),-DDEBUG=1,) -fe="ntc.exe" -0 -bcl=dos -mt $(if $(DEBUG),,-d0 -os -om -ob -oi -ol -ox) -lr -za99 -i=src $(SOURCES)
else
cc $(if $(GAS),-DSYNTAX_GAS=1,) $(if $(DEBUG),-DDEBUG=1,) -Wall -o ntc -fno-PIE -no-pie -std=gnu11 $(if $(DEBUG),-O0 -g,-Os -s) -fms-extensions -Isrc $(SOURCES)
endif

View File

@ -1,19 +1,11 @@
# N19 Reference Compiler
Made to compile fast and produce acceptable output. Currently only 386 output supported (protected and partially real mode).
Composed of the following passes:
1. Lexing
2. Parsing & loop\_second\_pass
3. Dumbification
4. Codegen
UD-chains are generated during parsing. Codegen uses on primitive patterns within the AST, possible thanks to dumbification. This technique is applicable owing to Nectar's already low-level nature
Made to compile fast and produce not great, but acceptable output. Currently only 386 output supported (protected and partially real mode).
# Installation
make
sudo make install
# Command-line usage

View File

@ -4,6 +4,14 @@
#include<string.h>
#include<stdlib.h>
int BINOP_COMMUTATIVE[] = {
[BINOP_ADD] = 1,
[BINOP_SUB] = 0,
[BINOP_MUL] = 1,
[BINOP_DIV] = 0
};
AST *ast_expression_optimize(AST *ast) {
return ast;
}
@ -29,13 +37,6 @@ int ast_stmt_is_after(const AST *chunk, const AST *s1, const AST *s2) {
const AST *s = chunk->chunk.statementFirst;
while(s) {
if(s->nodeKind == AST_STMT_LOOP) {
int i = ast_stmt_is_after(s->stmtLoop.body, s1, s2);
if(i != -1) {
return i;
}
}
if(s == s1) {
return 0;
}
@ -48,6 +49,11 @@ int ast_stmt_is_after(const AST *chunk, const AST *s1, const AST *s2) {
if(i != -1) {
return i;
}
} else if(s->nodeKind == AST_STMT_LOOP) {
int i = ast_stmt_is_after(s->stmtLoop.body, s1, s2);
if(i != -1) {
return i;
}
}
s = s->statement.next;

View File

@ -5,20 +5,7 @@
#include"lexer.h"
#include"vartable.h"
// VISITORS APPEAR IN varify_change_usedefs,ast_expr_is_equal,ast_stmt_is_after,
// dumben_chunk, cg_go, loop_second_pass AND OTHERS
//
// THEY ***MUST*** BE CHANGED ACCORDINGLY IF AST IS ALTERED
#pragma pack(push, 1)
#ifdef __GNUC__
#define ENUMPAK __attribute__((packed))
#else
#define ENUMPAK
#endif
typedef enum ENUMPAK {
typedef enum {
AST_CHUNK,
AST_STMT_DECL,
AST_TYPE_IDENTIFIER,
@ -42,7 +29,7 @@ typedef enum ENUMPAK {
AST_STMT_EXT_SECTION,
} ASTKind;
typedef enum ENUMPAK {
typedef enum {
BINOP_ADD = 0,
BINOP_SUB = 1,
BINOP_BITWISE_AND = 2,
@ -57,6 +44,7 @@ typedef enum ENUMPAK {
BINOP_WTF = 999,
} BinaryOp;
extern int BINOP_COMMUTATIVE[];
static inline int binop_is_comparison(BinaryOp op) {
return op == BINOP_EQUAL || op == BINOP_NEQUAL;
@ -71,7 +59,7 @@ static inline BinaryOp binop_comp_opposite(BinaryOp op) {
return BINOP_WTF;
}
typedef enum ENUMPAK {
typedef enum {
UNOP_DEREF = 0,
UNOP_NEGATE = 1,
UNOP_BITWISE_NOT = 2,
@ -263,8 +251,6 @@ typedef union AST {
ASTStmtExtSection stmtExtSection;
} AST;
#pragma pack(pop)
AST *ast_expression_optimize(AST*);
int ast_expression_equal(AST*, AST*);

129
src/cg.c
View File

@ -5,16 +5,14 @@
#include<string.h>
#include<assert.h>
#include"x86.h"
#define REGS 4
static const char *regs[REGS][3] = {{"al", "ax", "eax"}, {"bl", "bx", "ebx"}, {"cl", "cx", "ecx"}, {"dl", "dx", "edx"}};
static const char *regs[REGS][3] = {{"al", "ax", "eax"}, {"bl", "bx", "ebx"}, {"cl", "cx", "ecx"}, {"dl", "dx", "edx"}, {"sil", "si", "esi"}, {"dil", "di", "edi"}};
static const char *BINOP_SIMPLE_INSTRS[] = {[BINOP_ADD] = "add", [BINOP_SUB] = "sub", [BINOP_BITWISE_AND] = "and", [BINOP_BITWISE_OR] = "or", [BINOP_BITWISE_XOR] = "xor"};
static size_t nextLocalLabel = 0;
#define LOOPSTACKSIZE 96
#define LOOPSTACKSIZE 64
static size_t loopStackStart[LOOPSTACKSIZE];
static size_t loopStackEnd[LOOPSTACKSIZE];
static size_t loopStackIdx;
@ -39,21 +37,11 @@ static const char *spec(int size) {
abort();
}
static int log_size(int size) {
switch(size) {
case 1: return 0;
case 2: return 1;
case 4: return 2;
case 8: return 3;
}
abort();
}
static const char *specexpr(AST *e) {
return spec(type_size(e->expression.type));
}
static const char *xv_sz(VarTableEntry *v, int sz) {
static const char *xv(VarTableEntry *v) {
assert(v->kind == VARTABLEENTRY_VAR);
#define XVBUFS 8
@ -66,7 +54,7 @@ static const char *xv_sz(VarTableEntry *v, int sz) {
#ifdef DEBUG
snprintf(ret, XVBUFSZ, "@%i", v->data.var.color);
#else
snprintf(ret, XVBUFSZ, "%s", regs[v->data.var.color][log_size(sz)]);
snprintf(ret, XVBUFSZ, "%s", regs[v->data.var.color][2]);
#endif
bufidx = (bufidx + 1) % XVBUFS;
@ -74,10 +62,6 @@ static const char *xv_sz(VarTableEntry *v, int sz) {
return ret;
}
static const char *xv(VarTableEntry *v) {
return xv_sz(v, type_size(v->type));
}
static const char *xj(BinaryOp op) {
switch(op) {
case BINOP_EQUAL: return "e";
@ -86,7 +70,7 @@ static const char *xj(BinaryOp op) {
}
}
static const char *xop_sz(AST *e, int sz) {
static const char *xop(AST *e) {
#define XOPBUFS 16
#define XOPBUFSZ 24
static char bufs[XOPBUFS][XOPBUFSZ];
@ -98,32 +82,25 @@ static const char *xop_sz(AST *e, int sz) {
VarTableEntry *v = e->exprVar.thing;
if(v->kind == VARTABLEENTRY_VAR) {
return xv_sz(v, sz);
return xv(v);
} else if(v->kind == VARTABLEENTRY_SYMBOL) {
snprintf(ret, XOPBUFSZ, "[%s]", v->data.symbol.name);
} else abort();
} else if(e->nodeKind == AST_EXPR_PRIMITIVE) {
snprintf(ret, XOPBUFSZ, "%i", e->exprPrim.val);
} else if(e->nodeKind == AST_EXPR_UNARY_OP && e->exprUnOp.operator == UNOP_DEREF && e->exprUnOp.operand->nodeKind == AST_EXPR_BINARY_OP && e->exprUnOp.operand->exprBinOp.operator == BINOP_ADD && e->exprUnOp.operand->exprBinOp.operands[0]->nodeKind == AST_EXPR_VAR && e->exprUnOp.operand->exprBinOp.operands[1]->nodeKind == AST_EXPR_VAR && e->exprUnOp.operand->exprBinOp.operands[0]->exprVar.thing->kind == VARTABLEENTRY_VAR && e->exprUnOp.operand->exprBinOp.operands[1]->exprVar.thing->kind == VARTABLEENTRY_VAR) {
snprintf(ret, XOPBUFSZ, "%s [%s + %s]",
spec(sz),
xv_sz(e->exprUnOp.operand->exprBinOp.operands[0]->exprVar.thing, 4),
xv_sz(e->exprUnOp.operand->exprBinOp.operands[1]->exprVar.thing, 4));
} else if(e->nodeKind == AST_EXPR_UNARY_OP && e->exprUnOp.operator == UNOP_DEREF && e->exprUnOp.operand->nodeKind == AST_EXPR_BINARY_OP && e->exprUnOp.operand->exprBinOp.operator == BINOP_ADD && e->exprUnOp.operand->exprBinOp.operands[0]->nodeKind == AST_EXPR_UNARY_OP && e->exprUnOp.operand->exprBinOp.operands[1]->nodeKind == AST_EXPR_VAR && e->exprUnOp.operand->exprBinOp.operands[0]->exprUnOp.operator == UNOP_REF && e->exprUnOp.operand->exprBinOp.operands[0]->exprUnOp.operand->nodeKind == AST_EXPR_VAR && e->exprUnOp.operand->exprBinOp.operands[0]->exprUnOp.operand->exprVar.thing->kind == VARTABLEENTRY_SYMBOL && e->exprUnOp.operand->exprBinOp.operands[1]->exprVar.thing->kind == VARTABLEENTRY_VAR) {
snprintf(ret, XOPBUFSZ, "%s [%s + %s]",
spec(sz),
snprintf(ret, XOPBUFSZ, "[%s + %s]",
e->exprUnOp.operand->exprBinOp.operands[0]->exprUnOp.operand->exprVar.thing->data.symbol.name,
xv_sz(e->exprUnOp.operand->exprBinOp.operands[1]->exprVar.thing, 4));
xv(e->exprUnOp.operand->exprBinOp.operands[1]->exprVar.thing));
} else if(e->nodeKind == AST_EXPR_UNARY_OP && e->exprUnOp.operator == UNOP_DEREF && e->exprUnOp.operand->nodeKind == AST_EXPR_BINARY_OP && e->exprUnOp.operand->exprBinOp.operator == BINOP_ADD && e->exprUnOp.operand->exprBinOp.operands[0]->nodeKind == AST_EXPR_UNARY_OP && e->exprUnOp.operand->exprBinOp.operands[1]->nodeKind == AST_EXPR_BINARY_OP && e->exprUnOp.operand->exprBinOp.operands[0]->exprUnOp.operator == UNOP_REF && e->exprUnOp.operand->exprBinOp.operands[0]->exprUnOp.operand->nodeKind == AST_EXPR_VAR && e->exprUnOp.operand->exprBinOp.operands[0]->exprUnOp.operand->exprVar.thing->kind == VARTABLEENTRY_SYMBOL && e->exprUnOp.operand->exprBinOp.operands[1]->exprBinOp.operator == BINOP_MUL && e->exprUnOp.operand->exprBinOp.operands[1]->exprBinOp.operands[1]->nodeKind == AST_EXPR_VAR && e->exprUnOp.operand->exprBinOp.operands[1]->exprBinOp.operands[0]->nodeKind == AST_EXPR_PRIMITIVE && e->exprUnOp.operand->exprBinOp.operands[1]->exprBinOp.operands[1]->exprVar.thing->kind == VARTABLEENTRY_VAR) {
snprintf(ret, XOPBUFSZ, "%s [%s + %i * %s]",
spec(sz),
snprintf(ret, XOPBUFSZ, "[%s + %i * %s]",
e->exprUnOp.operand->exprBinOp.operands[0]->exprUnOp.operand->exprVar.thing->data.symbol.name,
e->exprUnOp.operand->exprBinOp.operands[1]->exprBinOp.operands[0]->exprPrim.val,
xv_sz(e->exprUnOp.operand->exprBinOp.operands[1]->exprBinOp.operands[1]->exprVar.thing, 4));
xv(e->exprUnOp.operand->exprBinOp.operands[1]->exprBinOp.operands[1]->exprVar.thing));
} else if(e->nodeKind == AST_EXPR_UNARY_OP && e->exprUnOp.operator == UNOP_REF && e->exprUnOp.operand->nodeKind == AST_EXPR_VAR && e->exprUnOp.operand->exprVar.thing->kind == VARTABLEENTRY_SYMBOL) {
snprintf(ret, XOPBUFSZ, "%s", e->exprUnOp.operand->exprVar.thing->data.symbol.name);
} else if(e->nodeKind == AST_EXPR_UNARY_OP && e->exprUnOp.operator == UNOP_DEREF && e->exprUnOp.operand->nodeKind == AST_EXPR_VAR && e->exprUnOp.operand->exprVar.thing->kind == VARTABLEENTRY_VAR) {
snprintf(ret, XOPBUFSZ, "%s [%s]", spec(sz), xv_sz(e->exprUnOp.operand->exprVar.thing, 4));
snprintf(ret, XOPBUFSZ, "[%s]", xv(e->exprUnOp.operand->exprVar.thing));
} else {
return NULL;
}
@ -133,10 +110,6 @@ static const char *xop_sz(AST *e, int sz) {
return ret;
}
static const char *xop(AST *e) {
return xop_sz(e, type_size(e->expression.type));
}
void cg_chunk(AST *a) {
AST *s = a->chunk.statementFirst;
@ -151,16 +124,6 @@ void cg_chunk(AST *a) {
printf("org %lu\n", s->stmtExtOrg.val);
} else if(s->nodeKind == AST_STMT_EXT_ALIGN) {
uint32_t val = s->stmtExtAlign.val;
if((val & (val - 1))) {
// nasm does not support non-PoT alignments, so pad manually
printf("times ($ - $$ + %u) / %u * %u - ($ - $$) db 0\n", val - 1, val, val);
} else {
printf("align %u\n", val);
}
} else if(s->nodeKind == AST_STMT_DECL && s->stmtDecl.thing->kind == VARTABLEENTRY_SYMBOL) {
VarTableEntry *v = s->stmtDecl.thing;
@ -172,72 +135,38 @@ void cg_chunk(AST *a) {
}
if(s->stmtDecl.expression) {
printf("%s:", v->data.symbol.name);
if(v->type->type == TYPE_TYPE_PRIMITIVE) {
assert(s->stmtDecl.expression->nodeKind == AST_EXPR_PRIMITIVE);
printf("%s %i", direct(type_size(v->type)), s->stmtDecl.expression->exprPrim.val);
} else if(v->type->type == TYPE_TYPE_ARRAY && v->type->array.of->type == TYPE_TYPE_PRIMITIVE) {
printf("%s ", direct(type_size(v->type->array.of)));
for(size_t i = 0; i < v->type->array.length; i++) {
printf("%i,", s->stmtDecl.expression->exprArray.items[i]->exprPrim.val);
}
} else printf("A");
putchar('\n');
puts("A");
} else {
printf("%s resb %lu\n", v->data.symbol.name, type_size(s->stmtDecl.thing->type));
}
}
} else if(s->nodeKind == AST_STMT_ASSIGN) {
if(s->stmtAssign.to) {
if(s->stmtAssign.to->nodeKind == AST_EXPR_BINARY_OP && ast_expression_equal(s->stmtAssign.what, s->stmtAssign.to->exprBinOp.operands[0]) && (s->stmtAssign.to->exprBinOp.operator == BINOP_ADD || s->stmtAssign.to->exprBinOp.operator == BINOP_SUB) && s->stmtAssign.to->exprBinOp.operands[1]->nodeKind == AST_EXPR_PRIMITIVE && s->stmtAssign.to->exprBinOp.operands[1]->exprPrim.val == 1) {
if(s->stmtAssign.to->nodeKind == AST_EXPR_BINARY_OP && ast_expression_equal(s->stmtAssign.what, s->stmtAssign.to->exprBinOp.operands[0]) && (s->stmtAssign.to->exprBinOp.operator == BINOP_ADD || s->stmtAssign.to->exprBinOp.operator == BINOP_SUB) && s->stmtAssign.to->exprBinOp.operands[1]->nodeKind == AST_EXPR_PRIMITIVE && s->stmtAssign.to->exprBinOp.operands[1]->exprPrim.val == 1) {
// inc or dec
// inc or dec
static const char *instrs[] = {"inc", "dec"};
printf("%s %s %s\n", instrs[s->stmtAssign.to->exprBinOp.operator == BINOP_SUB], specexpr(s->stmtAssign.what), xop(s->stmtAssign.what));
static const char *instrs[] = {"inc", "dec"};
printf("%s %s %s\n", instrs[s->stmtAssign.to->exprBinOp.operator == BINOP_SUB], specexpr(s->stmtAssign.what), xop(s->stmtAssign.what));
} else if(s->stmtAssign.what->nodeKind == AST_EXPR_VAR && s->stmtAssign.to->nodeKind == AST_EXPR_BINARY_OP && s->stmtAssign.to->exprBinOp.operator == BINOP_ADD && s->stmtAssign.to->exprBinOp.operands[0]->nodeKind == AST_EXPR_VAR && s->stmtAssign.to->exprBinOp.operands[1]->nodeKind == AST_EXPR_VAR && s->stmtAssign.to->exprBinOp.operands[0]->exprVar.thing->kind == VARTABLEENTRY_VAR && s->stmtAssign.to->exprBinOp.operands[1]->exprVar.thing->kind == VARTABLEENTRY_VAR) {
} else if(s->stmtAssign.what->nodeKind == AST_EXPR_VAR && s->stmtAssign.to->nodeKind == AST_EXPR_BINARY_OP && s->stmtAssign.to->exprBinOp.operator == BINOP_ADD && s->stmtAssign.to->exprBinOp.operands[0]->nodeKind == AST_EXPR_VAR && s->stmtAssign.to->exprBinOp.operands[1]->nodeKind == AST_EXPR_VAR && s->stmtAssign.to->exprBinOp.operands[0]->exprVar.thing->kind == VARTABLEENTRY_VAR && s->stmtAssign.to->exprBinOp.operands[1]->exprVar.thing->kind == VARTABLEENTRY_VAR) {
printf("lea %s, [%s + %s]\n",
xv(s->stmtAssign.what->exprVar.thing),
xv(s->stmtAssign.to->exprBinOp.operands[0]->exprVar.thing),
xv(s->stmtAssign.to->exprBinOp.operands[1]->exprVar.thing));
printf("lea %s, [%s + %s]\n",
xv(s->stmtAssign.what->exprVar.thing),
xv(s->stmtAssign.to->exprBinOp.operands[0]->exprVar.thing),
xv(s->stmtAssign.to->exprBinOp.operands[1]->exprVar.thing));
} else if(s->stmtAssign.what->nodeKind == AST_EXPR_VAR && s->stmtAssign.to->nodeKind == AST_EXPR_BINARY_OP && s->stmtAssign.to->exprBinOp.operator == BINOP_ADD && s->stmtAssign.to->exprBinOp.operands[0]->nodeKind == AST_EXPR_UNARY_OP && s->stmtAssign.to->exprBinOp.operands[0]->exprUnOp.operator == UNOP_REF && s->stmtAssign.to->exprBinOp.operands[0]->exprUnOp.operand->nodeKind == AST_EXPR_VAR && s->stmtAssign.to->exprBinOp.operands[1]->nodeKind == AST_EXPR_VAR && s->stmtAssign.to->exprBinOp.operands[0]->exprUnOp.operand->exprVar.thing->kind == VARTABLEENTRY_SYMBOL && s->stmtAssign.to->exprBinOp.operands[1]->exprVar.thing->kind == VARTABLEENTRY_VAR) {
} else if(s->stmtAssign.what->nodeKind == AST_EXPR_VAR && s->stmtAssign.to->nodeKind == AST_EXPR_BINARY_OP && s->stmtAssign.to->exprBinOp.operator == BINOP_ADD && s->stmtAssign.to->exprBinOp.operands[0]->nodeKind == AST_EXPR_UNARY_OP && s->stmtAssign.to->exprBinOp.operands[0]->exprUnOp.operator == UNOP_REF && s->stmtAssign.to->exprBinOp.operands[0]->exprUnOp.operand->nodeKind == AST_EXPR_VAR && s->stmtAssign.to->exprBinOp.operands[1]->nodeKind == AST_EXPR_VAR && s->stmtAssign.to->exprBinOp.operands[0]->exprUnOp.operand->exprVar.thing->kind == VARTABLEENTRY_SYMBOL && s->stmtAssign.to->exprBinOp.operands[1]->exprVar.thing->kind == VARTABLEENTRY_VAR) {
printf("lea %s, [%s + %s]\n",
xv(s->stmtAssign.what->exprVar.thing),
s->stmtAssign.to->exprBinOp.operands[0]->exprUnOp.operand->exprVar.thing->data.symbol.name,
xv(s->stmtAssign.to->exprBinOp.operands[1]->exprVar.thing));
printf("lea %s, [%s + %s]\n",
xv(s->stmtAssign.what->exprVar.thing),
s->stmtAssign.to->exprBinOp.operands[0]->exprUnOp.operand->exprVar.thing->data.symbol.name,
xv(s->stmtAssign.to->exprBinOp.operands[1]->exprVar.thing));
} else if(s->stmtAssign.what->nodeKind == AST_EXPR_VAR && s->stmtAssign.to->nodeKind == AST_EXPR_BINARY_OP && s->stmtAssign.to->exprBinOp.operator == BINOP_ADD && s->stmtAssign.to->exprBinOp.operands[0]->nodeKind == AST_EXPR_VAR && s->stmtAssign.to->exprBinOp.operands[1]->nodeKind == AST_EXPR_PRIMITIVE && s->stmtAssign.to->exprBinOp.operands[0]->exprVar.thing->kind == VARTABLEENTRY_VAR) {
} else {
printf("lea %s, [%s + %i]\n",
xv_sz(s->stmtAssign.what->exprVar.thing, 4),
xv_sz(s->stmtAssign.to->exprBinOp.operands[0]->exprVar.thing, 4),
s->stmtAssign.to->exprBinOp.operands[1]->exprPrim.val);
printf("mov %s, %s\n", xop(s->stmtAssign.what), xop(s->stmtAssign.to));
} else if(is_xop(s->stmtAssign.what) != NULL && s->stmtAssign.to->nodeKind == AST_EXPR_UNARY_OP && s->stmtAssign.to->exprUnOp.operator == UNOP_NEGATE && ast_expression_equal(s->stmtAssign.what, s->stmtAssign.to->exprUnOp.operand)) {
printf("neg %s\n", xop(s->stmtAssign.what));
} else {
if(is_xop(s->stmtAssign.to) == XOP_MEM && type_size(s->stmtAssign.what->expression.type) != type_size(s->stmtAssign.to->expression.type)) {
printf("movzx %s, %s\n", xop_sz(s->stmtAssign.what, 4), xop_sz(s->stmtAssign.to, type_size(s->stmtAssign.what->expression.type)));
} else {
printf("mov %s, %s\n", xop(s->stmtAssign.what), xop_sz(s->stmtAssign.to, type_size(s->stmtAssign.what->expression.type)));
}
}
}
} else if(s->nodeKind == AST_STMT_LOOP) {
@ -273,7 +202,7 @@ void cg_chunk(AST *a) {
size_t lbl = nextLocalLabel++;
printf("cmp %s, %s\n", xop(s->stmtIf.expression->exprBinOp.operands[0]), xop(s->stmtIf.expression->exprBinOp.operands[1]));
printf("cmp %s %s, %s\n", specexpr(s->stmtIf.expression->exprBinOp.operands[0]), xop(s->stmtIf.expression->exprBinOp.operands[0]), xop(s->stmtIf.expression->exprBinOp.operands[1]));
printf("j%s .L%lu\n", xj(binop_comp_opposite(s->stmtIf.expression->exprBinOp.operator)), lbl);
cg_chunk(s->stmtIf.then);

View File

@ -1,308 +0,0 @@
#include"dumberdowner.h"
#include<stdlib.h>
#include<assert.h>
// This is the dumbing down pass.
//
// Complex expressions are to be "broken down" into simpler ones until the AST
// can be trivially translated to the target architecture.
//
// This pass, along with CG is strictly dependent on x86 and will fail for
// any other architecture.
#include"x86.h"
static void varify_change_usedefs(AST *e, AST *oldStmt, AST *newStmt) {
if(e->nodeKind == AST_EXPR_VAR) {
if(e->exprVar.thing->kind != VARTABLEENTRY_VAR) {
return;
}
UseDef *swapWithPrev = NULL;
UseDef *swapWith = NULL;
UseDef *udPrev = NULL;
UseDef *ud = e->exprVar.thing->data.var.usedefFirst;
while(ud && ud->use != e) {
if(ud->stmt == oldStmt && !swapWith) {
swapWithPrev = udPrev;
swapWith = ud;
}
udPrev = ud;
ud = ud->next;
}
if(ud) {
assert(ud->stmt == oldStmt);
ud->stmt = newStmt;
// We must make sure all newStmt usedefs are before the oldStmt ones, so swap
if(swapWith) {
assert(!!swapWithPrev + !!udPrev != 0);
if(swapWithPrev) {
swapWithPrev->next = ud;
} else {
e->exprVar.thing->data.var.usedefFirst = ud;
}
if(udPrev) {
udPrev->next = swapWith;
} else {
e->exprVar.thing->data.var.usedefFirst = swapWith;
}
UseDef *temp = ud->next;
ud->next = swapWith->next;
swapWith->next = temp;
assert(!!ud->next + !!swapWith->next != 0);
if(!swapWith->next) {
e->exprVar.thing->data.var.usedefLast = swapWith;
}
if(!ud->next) {
e->exprVar.thing->data.var.usedefLast = ud;
}
}
}
} else if(e->nodeKind == AST_EXPR_BINARY_OP) {
varify_change_usedefs(e->exprBinOp.operands[0], oldStmt, newStmt);
varify_change_usedefs(e->exprBinOp.operands[1], oldStmt, newStmt);
} else if(e->nodeKind == AST_EXPR_UNARY_OP) {
varify_change_usedefs(e->exprUnOp.operand, oldStmt, newStmt);
} else if(e->nodeKind == AST_EXPR_CALL) {
varify_change_usedefs(e->exprCall.what, oldStmt, newStmt);
int argCount = e->exprCall.what->expression.type->function.argCount;
for(int i = 0; i < argCount; i++) {
varify_change_usedefs(e->exprCall.args[i], oldStmt, newStmt);
}
} else if(e->nodeKind == AST_EXPR_ARRAY) {
int sz = e->exprArray.type->array.length;
for(int i = 0; i < sz; i++) {
varify_change_usedefs(e->exprArray.items[i], oldStmt, newStmt);
}
} else if(e->nodeKind == AST_EXPR_CAST) {
varify_change_usedefs(e->exprCast.what, oldStmt, newStmt);
}
}
/* Split away complex expression into a new local variable */
static AST *varify(AST *tlc, AST *chunk, AST *stmtPrev, AST *stmt, AST *e) {
VarTableEntry *vte = malloc(sizeof(*vte));
vte->kind = VARTABLEENTRY_VAR;
vte->type = e->expression.type;
vte->data.var.color = 0;
vte->data.var.degree = 0;
vte->data.var.priority = 0;
vte->data.var.reachingDefs = NULL;
// Add to var array
tlc->chunk.vars = realloc(tlc->chunk.vars, sizeof(*tlc->chunk.vars) * (++tlc->chunk.varCount));
tlc->chunk.vars[tlc->chunk.varCount - 1] = vte;
// Alter AST
ASTExprVar *ev[2];
for(int i = 0; i < 2; i++) {
ev[i] = malloc(sizeof(ASTExprVar));
ev[i]->nodeKind = AST_EXPR_VAR;
ev[i]->type = e->expression.type;
ev[i]->thing = vte;
}
ASTStmtAssign *assign = malloc(sizeof(*assign));
assign->nodeKind = AST_STMT_ASSIGN;
assign->what = (AST*) ev[0];
assign->to = e;
if(stmtPrev) {
stmtPrev->statement.next = (AST*) assign;
} else {
chunk->chunk.statementFirst = (AST*) assign;
}
assign->next = stmt;
// Assemble ud-chain
UseDef *ud[2];
ud[0] = malloc(sizeof(UseDef));
ud[1] = malloc(sizeof(UseDef));
ud[0]->stmt = (AST*) assign;
ud[0]->use = assign->what;
ud[0]->def = (AST*) assign;
ud[0]->next = ud[1];
ud[1]->stmt = stmt;
ud[1]->use = (AST*) ev[1];
ud[1]->def = (AST*) assign;
ud[1]->next = NULL;
vte->data.var.usedefFirst = ud[0];
vte->data.var.usedefLast = ud[1];
// Correct the ud-chain of variables used in varified expression `e`
varify_change_usedefs(e, stmt, (AST*) assign);
return (AST*) ev[1];
}
static AST *xopify(AST *tlc, AST *chunk, AST *stmtPrev, AST *stmt, AST *e) {
return varify(tlc, chunk, stmtPrev, stmt, e);
}
static UseDef *get_last_usedef_before_stmt(AST *tlc, VarTableEntry *v, AST *stmt) {
assert(v->kind == VARTABLEENTRY_VAR);
UseDef *ud = v->data.var.usedefFirst;
if(!ud) {
return NULL;
}
UseDef *udPrev = NULL;
while(ud) {
if(ast_stmt_is_after(tlc, ud->stmt, stmt)) {
break;
}
udPrev = ud;
ud = ud->next;
}
return udPrev;
}
static int dumben_chunk(AST *tlc, AST *chu) {
AST *sPrev = NULL;
AST *s = chu->chunk.statementFirst;
int effective = 0;
while(s) {
if(s->nodeKind == AST_STMT_IF) {
AST *e = s->stmtIf.expression;
if(e->nodeKind == AST_EXPR_BINARY_OP && binop_is_comparison(e->exprBinOp.operator)) {
if(is_xop(e->exprBinOp.operands[0]) == XOP_NOT_XOP) {
e->exprBinOp.operands[0] = xopify(tlc, chu, sPrev, s, e->exprBinOp.operands[0]);
effective = 1;
}
if(is_xop(e->exprBinOp.operands[1]) == XOP_NOT_XOP) {
e->exprBinOp.operands[1] = xopify(tlc, chu, sPrev, s, e->exprBinOp.operands[1]);
effective = 1;
}
if(is_xop(e->exprBinOp.operands[0]) == XOP_MEM && is_xop(e->exprBinOp.operands[1]) == XOP_MEM) {
// Can't have two mems; put one in var
e->exprBinOp.operands[1] = varify(tlc, chu, sPrev, s, e->exprBinOp.operands[1]);
effective = 1;
}
} else {
s->stmtIf.expression = varify(tlc, chu, sPrev, s, e);
effective = 1;
}
effective |= dumben_chunk(tlc, s->stmtIf.then);
} else if(s->nodeKind == AST_STMT_LOOP) {
effective |= dumben_chunk(tlc, s->stmtLoop.body);
} else if(s->nodeKind == AST_STMT_ASSIGN) {
if(s->stmtAssign.what->nodeKind == AST_EXPR_UNARY_OP && s->stmtAssign.what->exprUnOp.operator == UNOP_DEREF
&& s->stmtAssign.to->nodeKind == AST_EXPR_UNARY_OP && s->stmtAssign.to->exprUnOp.operator == UNOP_DEREF) {
s->stmtAssign.to = varify(tlc, chu, sPrev, s, s->stmtAssign.to);
effective = 1;
}
if(s->stmtAssign.what->nodeKind == AST_EXPR_VAR && s->stmtAssign.what->exprVar.thing->kind == VARTABLEENTRY_VAR && s->stmtAssign.to->nodeKind == AST_EXPR_UNARY_OP && s->stmtAssign.to->exprUnOp.operator == UNOP_NEGATE && (s->stmtAssign.to->exprUnOp.operand->nodeKind != AST_EXPR_VAR || s->stmtAssign.what->exprVar.thing != s->stmtAssign.to->exprUnOp.operand->exprVar.thing)) {
// Turn this:
// a = -b
// into
// a = b
// a = -a
// While keeping UD-chain valid.
// Currently only for variables. While this could work for any XOP, it requires the ability to deep-copy `a`, which is not trivial when taking into account UD-chains.
// TODO: Scrap incremental UD-chain modifications. Simply rebuild them after each pass.
ASTExprVar *ev[2];
for(int i = 0; i < 2; i++) {
ev[i] = malloc(sizeof(ASTExprVar));
ev[i]->nodeKind = AST_EXPR_VAR;
ev[i]->type = s->stmtAssign.what->expression.type;
ev[i]->thing = s->stmtAssign.what->exprVar.thing;
}
AST *negation = s->stmtAssign.to;
s->stmtAssign.to = negation->exprUnOp.operand;
negation->exprUnOp.operand = ev[0];
AST *assign2 = malloc(sizeof(ASTStmtAssign));
assign2->nodeKind = AST_STMT_ASSIGN;
assign2->stmtAssign.what = ev[1];
assign2->stmtAssign.to = negation;
assign2->statement.next = s->statement.next;
s->statement.next = assign2;
UseDef *link = get_last_usedef_before_stmt(tlc, ev[0]->thing, assign2->statement.next);
UseDef *ud[2];
ud[0] = malloc(sizeof(UseDef));
ud[1] = malloc(sizeof(UseDef));
ud[0]->stmt = assign2;
ud[0]->use = (AST*) ev[1];
ud[0]->def = s;
ud[0]->next = ud[1];
ud[1]->stmt = assign2;
ud[1]->use = (AST*) ev[0];
ud[1]->def = s;
ud[1]->next = link->next;
link->next = ud[0];
effective = 1;
}
} else if(s->nodeKind == AST_STMT_EXPR && s->stmtExpr.expr->nodeKind == AST_EXPR_CALL) {
int argCount = s->stmtExpr.expr->exprCall.what->expression.type->function.argCount;
for(int i = 0; i < argCount; i++) {
if(is_xop(s->stmtExpr.expr->exprCall.args[i]) == XOP_NOT_XOP) {
s->stmtExpr.expr->exprCall.args[i] = xopify(tlc, chu, sPrev, s, s->stmtExpr.expr->exprCall.args[i]);
effective = 1;
}
}
}
sPrev = s;
s = s->statement.next;
}
return effective;
}
void dumben_go(AST* tlc) {
while(dumben_chunk(tlc, tlc));
}

View File

@ -1,5 +0,0 @@
#pragma once
#include"ast.h"
void dumben_go(AST* a);

View File

@ -318,10 +318,3 @@ Token *nct_lex(FILE *f) {
return NULL; /* Doesn't reach here. */
}
void nct_lex_free(Token *tokens) {
for(Token *t = tokens; t->type != TOKEN_EOF; t++) {
if(t->content) free(t->content);
}
free(tokens);
}

View File

@ -50,6 +50,5 @@ typedef struct {
Token nct_tokenize(FILE*);
Token *nct_lex(FILE*);
void nct_lex_free(Token *);
#endif

View File

@ -7,7 +7,6 @@
#include"ntc.h"
#include"reporting.h"
#include"cg.h"
#include"dumberdowner.h"
static int argc;
static char **argv;
@ -37,8 +36,6 @@ int main(int argc_, char **argv_) {
free(tokens);
dumben_go(chunk);
cg_go(chunk);
return 0;

View File

@ -9,21 +9,6 @@
#include<stdint.h>
#include<signal.h>
#ifndef __GNUC__
static inline int __builtin_clzl(unsigned long x) {
unsigned long n = 32;
unsigned long y;
y = x >>16; if (y != 0) { n = n -16; x = y; }
y = x >> 8; if (y != 0) { n = n - 8; x = y; }
y = x >> 4; if (y != 0) { n = n - 4; x = y; }
y = x >> 2; if (y != 0) { n = n - 2; x = y; }
y = x >> 1; if (y != 0) return n - 2;
return n - x;
}
#endif
typedef struct {
UseDef ud;
VarTableEntry *to;
@ -31,7 +16,7 @@ typedef struct {
typedef struct {
Token *tokens;
intmax_t i;
ssize_t i;
VarTable *scope;
@ -44,11 +29,6 @@ typedef struct {
// Used by pushstmt to assemble use-def chain
size_t udsToAddCount;
UseDefToAdd *udsToAdd;
// Used to place guard variable uses after loops to stop reg allocation from fucking up
VarTable *loopScope;
size_t guardedVarCount;
ASTExprVar **guardedVars;
} Parser;
static Token get(Parser *P) {
@ -95,11 +75,6 @@ static void pushstat(Parser *P, void *a) {
memcpy(ud, &P->udsToAdd[i].ud, sizeof(*ud));
ud->stmt = a;
/*if(ud->stmt->nodeKind == AST_STMT_ASSIGN && ud->stmt->stmtAssign.what == ud->use) {
// Forget. The x in `x = y` is not a use of x.
continue;
}*/
if(to->data.var.usedefFirst) {
to->data.var.usedefLast->next = ud;
to->data.var.usedefLast = ud;
@ -121,6 +96,7 @@ static void pushstat(Parser *P, void *a) {
static ASTExprPrimitive *parse_prim(Parser *P) {
ASTExprPrimitive *ret = malloc(sizeof(*ret));
ret->nodeKind = AST_EXPR_PRIMITIVE;
ret->type = (Type*) primitive_parse("s16");
Token tok = get(P);
@ -133,32 +109,21 @@ static ASTExprPrimitive *parse_prim(Parser *P) {
ret->val = strtol(str, NULL, base);
// Smallest integer type to store number
char buf[8];
snprintf(buf, sizeof(buf), "s%i", ret->val ? (64 - __builtin_clzl(ret->val - 1)) : 1);
ret->type = (Type*) primitive_parse(buf);
return ret;
}
static void newusedef(Parser *P, VarTableEntry *v, AST *expr) {
ReachingDefs *defs = v->data.var.reachingDefs;
while(defs) {
for(size_t i = 0; i < defs->defCount; i++) {
P->udsToAdd = realloc(P->udsToAdd, sizeof(*P->udsToAdd) * (++P->udsToAddCount));
P->udsToAdd[P->udsToAddCount - 1].ud.def = defs->defs[i];
P->udsToAdd[P->udsToAddCount - 1].ud.use = expr;
P->udsToAdd[P->udsToAddCount - 1].ud.stmt = NULL; // set by pushstmt
P->udsToAdd[P->udsToAddCount - 1].ud.next = NULL;
P->udsToAdd[P->udsToAddCount - 1].to = v;
}
if(defs->excludeParent) {
break;
}
defs = defs->parent;
for(size_t i = 0; i < v->data.var.reachingDefs->defCount; i++) {
P->udsToAdd = realloc(P->udsToAdd, sizeof(*P->udsToAdd) * (++P->udsToAddCount));
P->udsToAdd[P->udsToAddCount - 1] = (UseDefToAdd) {
.ud = {
.def = v->data.var.reachingDefs->defs[i],
.use = expr,
.stmt = NULL, // set by pushstmt
.next = NULL,
},
.to = v
};
}
}
@ -172,36 +137,6 @@ static AST *exprvar(Parser *P, VarTableEntry *v) {
newusedef(P, v, a);
}
if(P->loopScope) {
// XXX: O(n)!!!!!!!!!
int inloop = 0;
for(VarTable *vt = v->owner; vt; vt = vt->parent) {
if(vt->parent == P->loopScope) {
inloop = 1;
break;
}
}
if(!inloop) {
int alreadyAdded = 0;
for(size_t i = 0; i < P->guardedVarCount; i++) {
if(P->guardedVars[i]->thing == v) {
alreadyAdded = 1;
break;
}
}
if(!alreadyAdded) {
ASTExprVar *ev = malloc(sizeof(*ev));
memcpy(ev, a, sizeof(*ev));
P->guardedVars = realloc(P->guardedVars, sizeof(*P->guardedVars) * (P->guardedVarCount + 1));
P->guardedVars[P->guardedVarCount++] = ev;
}
}
}
return a;
}
@ -228,14 +163,10 @@ AST *nct_cast_expr(AST *what, Type *to) {
}
return (AST*) ret;
} else if(to->type == TYPE_TYPE_PRIMITIVE) {
if(to->primitive.width != what->exprStrLit.length * 8) {
stahp(0, 0, "Size mismatch between string literal and target type");
}
} else if(to->type == TYPE_TYPE_PRIMITIVE && to->primitive.width == 32) {
ASTExprPrimitive *ret = malloc(sizeof(*ret));
ret->nodeKind = AST_EXPR_PRIMITIVE;
ret->type = to;
ret->type = primitive_parse("u32");
memcpy(&ret->val, what->exprStrLit.data, sizeof(ret->val));
return (AST*) ret;
} else abort();
@ -254,9 +185,6 @@ AST *nct_cast_expr(AST *what, Type *to) {
ret->val = what->exprPrim.val & (((int64_t) 1 << to->primitive.width) - 1);
return (AST*) ret;
} else {
// Silently fail :)
return what;
ASTExprCast *ret = malloc(sizeof(*ret));
ret->nodeKind = AST_EXPR_CAST;
ret->type = to;
@ -285,10 +213,6 @@ AST *nct_parse_expression(Parser *P, int lOP) {
ret->length = tok.length;
return (AST*) ret;
} else if(maybe(P, TOKEN_PAREN_L)) {
AST *e = nct_parse_expression(P, 0);
expect(P, TOKEN_PAREN_R);
return e;
}
} else if(lOP == 4) {
if(maybe(P, TOKEN_STAR)) {
@ -653,7 +577,6 @@ static AST *parse_declaration(Parser *P) {
ASTStmtAssign *assign = malloc(sizeof(*assign));
assign->nodeKind = AST_STMT_ASSIGN;
assign->next = NULL;
entry->data.var.reachingDefs = reachingdefs_push(NULL);
reachingdefs_set(entry->data.var.reachingDefs, (AST*) assign);
@ -710,77 +633,6 @@ backtrack:
return NULL;
}
/* Imagine the following pseudocode:
x = ...
while ... {
(do something with x)
x = ...
}
The second definition of x reaches the code *before* it.
Therefore we must go over the loop body a second time with known reaching definitions and add the necessary usedefs.*/
static void loop_second_pass(AST *a) {
if(a->nodeKind == AST_CHUNK) {
for(AST *s = a->chunk.statementFirst; s; s = s->statement.next) {
loop_second_pass(s);
}
} else if(a->nodeKind == AST_STMT_IF) {
loop_second_pass(a->stmtIf.expression);
loop_second_pass(a->stmtIf.then);
} else if(a->nodeKind == AST_STMT_LOOP) {
loop_second_pass(a->stmtLoop.body);
} else if(a->nodeKind == AST_STMT_ASSIGN) {
loop_second_pass(a->stmtAssign.what);
loop_second_pass(a->stmtAssign.to);
/* TODO: Per-variable flag.to cease additional usedefs after assignment?
It is okay to have too many usedefs, so this isn't high priority.*/
} else if(a->nodeKind == AST_STMT_EXPR) {
loop_second_pass(a->stmtExpr.expr);
} else if(a->nodeKind == AST_EXPR_VAR) {
UseDef *udPrev = NULL;
UseDef *ud = a->exprVar.thing->data.var.usedefFirst;
while(ud && ud->use != a) {
udPrev = ud;
ud = ud->next;
}
if(ud) {
ReachingDefs *defs = a->exprVar.thing->data.var.reachingDefs;
while(defs) {
for(size_t i = 0; i < defs->defCount; i++) {
UseDef *newud = calloc(1, sizeof(*newud));
memcpy(newud, ud, sizeof(*ud));
newud->def = defs->defs[i];
udPrev->next = newud;
newud->next = ud;
ud = newud;
}
if(defs->excludeParent) {
break;
}
defs = defs->parent;
}
}
} else if(a->nodeKind == AST_EXPR_BINARY_OP) {
loop_second_pass(a->exprBinOp.operands[0]);
loop_second_pass(a->exprBinOp.operands[1]);
} else if(a->nodeKind == AST_EXPR_UNARY_OP) {
loop_second_pass(a->exprUnOp.operand);
} else if(a->nodeKind == AST_EXPR_CAST) {
loop_second_pass(a->exprCast.what);
} else if(a->nodeKind == AST_EXPR_CALL) {
loop_second_pass(a->exprCall.what);
size_t argCount = a->exprCall.what->expression.type->function.argCount;
for(size_t i = 0; i < argCount; i++) {
loop_second_pass(a->exprCall.args[i]);
}
}
}
ASTChunk *nct_parse_chunk(Parser*, int, int);
void nct_parse_statement(Parser *P) {
if(maybe(P, TOKEN_IF)) {
@ -805,31 +657,10 @@ void nct_parse_statement(Parser *P) {
ret->nodeKind = AST_STMT_LOOP;
ret->next = NULL;
int isFirstLoop = P->loopScope == NULL;
if(isFirstLoop) {
P->loopScope = P->scope;
}
expect(P, TOKEN_SQUIGGLY_L);
ret->body = (AST*) nct_parse_chunk(P, 0, 1);
expect(P, TOKEN_SQUIGGLY_R);
if(isFirstLoop) {
P->loopScope = NULL;
for(size_t i = 0; i < P->guardedVarCount; i++) {
ASTExprVar *ev = P->guardedVars[i];
newusedef(P, ev->thing, ev);
}
P->guardedVarCount = 0;
free(P->guardedVars);
P->guardedVars = NULL;
}
loop_second_pass(ret->body);
pushstat(P, ret);
return;
} else if(maybe(P, TOKEN_BREAK)) {
@ -918,7 +749,7 @@ void nct_parse_statement(Parser *P) {
ret->nodeKind = AST_STMT_ASSIGN;
ret->next = NULL;
ret->what = e;
ret->to = nct_cast_expr(nct_parse_expression(P, 0), ret->what->expression.type);
ret->to = nct_parse_expression(P, 0);//nct_cast_expr(nct_parse_expression(P, 0), ret->what->expression.type);
if(ret->what->nodeKind == AST_EXPR_VAR) {
reachingdefs_set(ret->what->exprVar.thing->data.var.reachingDefs, (AST*) ret);
@ -942,6 +773,9 @@ void nct_parse_statement(Parser *P) {
}
ASTChunk *nct_parse_chunk(Parser *P, int isTopLevel, int varPrioritize) {
if(P->scope) {
}
AST *ret = malloc(sizeof(ASTChunk));
ret->nodeKind = AST_CHUNK;
ret->chunk.statementFirst = ret->chunk.statementLast = NULL;
@ -1017,7 +851,6 @@ ASTChunk *nct_parse_chunk(Parser *P, int isTopLevel, int varPrioritize) {
for(size_t i = 0; i < P->scope->count; i++) {
if(P->scope->data[i]->kind == VARTABLEENTRY_VAR) {
P->topLevel->vars[P->topLevel->varCount++] = P->scope->data[i];
P->scope->data[i]->owner = P->topLevel;
}
}

View File

@ -22,7 +22,7 @@ Type *primitive_parse(const char *src) {
TypePrimitive *ret = malloc(sizeof(*ret));
ret->type = TYPE_TYPE_PRIMITIVE;
ret->src = strdup(src);
ret->src = src;
if(*src == 'n') {
src++;

View File

@ -62,7 +62,6 @@ typedef union Type {
extern Type TYPE_ERROR;
Type *primitive_parse(const char*);
Type *primitive_make(uint16_t width);
size_t type_size(Type*);
int type_equal(Type*, Type*);

View File

@ -26,7 +26,6 @@ void reachingdefs_set(struct ReachingDefs *this, union AST *def) {
this->defCount = 1;
this->defs = realloc(this->defs, sizeof(*this->defs) * this->defCount);
this->defs[0] = def;
this->excludeParent = 1;
}
VarTable *vartable_new(VarTable *parent) {
@ -65,7 +64,6 @@ VarTableEntry *vartable_set(VarTable *this, const char *name, VarTableEntry *e)
this->data[this->count] = e;
this->count++;
if(e->kind == VARTABLEENTRY_VAR) e->data.var.name = name;
e->owner = this;
return e;
}

View File

@ -20,19 +20,15 @@ typedef struct ReachingDefs {
size_t defCount;
union AST **defs;
int excludeParent;
struct ReachingDefs *parent;
} ReachingDefs;
struct ReachingDefs *reachingdefs_push(struct ReachingDefs*);
struct ReachingDefs *reachingdefs_coalesce(struct ReachingDefs*);
void reachingdefs_set(struct ReachingDefs*, union AST*);
struct VarTable;
typedef struct VarTableEntry {
Type *type;
struct VarTable *owner;
VarTableEntryKind kind;
struct {
union {

View File

@ -1,35 +0,0 @@
#pragma once
// Can expression be expressed as a single x86 operand?
#define XOP_NOT_XOP 0
#define XOP_NOT_MEM 1
#define XOP_MEM 2
static inline int is_xop(AST *e) {
if(e->nodeKind == AST_EXPR_PRIMITIVE) {
return XOP_NOT_MEM;
} else if(e->nodeKind == AST_EXPR_VAR) {
return e->exprVar.thing->kind == VARTABLEENTRY_VAR ? XOP_NOT_MEM : XOP_MEM;
} else if(e->nodeKind == AST_EXPR_UNARY_OP && e->exprUnOp.operator == UNOP_DEREF && e->exprUnOp.operand->nodeKind == AST_EXPR_BINARY_OP && e->exprUnOp.operand->exprBinOp.operator == BINOP_ADD && e->exprUnOp.operand->exprBinOp.operands[0]->nodeKind == AST_EXPR_VAR && e->exprUnOp.operand->exprBinOp.operands[1]->nodeKind == AST_EXPR_VAR && e->exprUnOp.operand->exprBinOp.operands[0]->exprVar.thing->kind == VARTABLEENTRY_VAR && e->exprUnOp.operand->exprBinOp.operands[1]->exprVar.thing->kind == VARTABLEENTRY_VAR) {
return XOP_MEM;
} else if(e->nodeKind == AST_EXPR_UNARY_OP && e->exprUnOp.operator == UNOP_REF && e->exprUnOp.operand->nodeKind == AST_EXPR_VAR && e->exprUnOp.operand->exprVar.thing->kind == VARTABLEENTRY_SYMBOL) {
return XOP_NOT_MEM;
} else if(e->nodeKind == AST_EXPR_UNARY_OP && e->exprUnOp.operator == UNOP_DEREF) {
AST *c = e->exprUnOp.operand;
if(c->nodeKind == AST_EXPR_VAR && c->exprVar.thing->kind == VARTABLEENTRY_VAR) {
return XOP_MEM;
} else if(c->nodeKind == AST_EXPR_BINARY_OP && c->exprBinOp.operator == BINOP_ADD && c->exprBinOp.operands[0]->nodeKind == AST_EXPR_UNARY_OP && c->exprBinOp.operands[0]->exprUnOp.operator == UNOP_REF && c->exprBinOp.operands[0]->exprUnOp.operand->nodeKind == AST_EXPR_VAR) {
if(c->exprBinOp.operands[1]->nodeKind == AST_EXPR_VAR) {
return XOP_MEM;
} else if(c->exprBinOp.operands[1]->nodeKind == AST_EXPR_BINARY_OP && c->exprBinOp.operands[1]->exprBinOp.operator == BINOP_MUL && c->exprBinOp.operands[1]->exprBinOp.operands[0]->nodeKind == AST_EXPR_PRIMITIVE && c->exprBinOp.operands[1]->exprBinOp.operands[1]->nodeKind == AST_EXPR_VAR) {
int scale = c->exprBinOp.operands[1]->exprBinOp.operands[0]->exprPrim.val;
if(scale == 1 || scale == 2 || scale == 4 || scale == 8) {
return XOP_MEM;
}
}
}
}
return XOP_NOT_XOP;
}

View File

@ -30,10 +30,12 @@ loop {
data[dataPtr] = data[dataPtr] - 1;
}
if(code[codePtr] == 46) {
write(1, &data + dataPtr, 1);
u32 z = &data + dataPtr;
write(1, z, 1);
}
if(code[codePtr] == 44) {
read(0, &data + dataPtr, 1);
u32 z = &data + dataPtr;
read(0, z, 1);
}
if(code[codePtr] == 91) {
if(data[dataPtr] == 0) {
@ -73,3 +75,7 @@ loop {
codePtr = codePtr + 1;
}
codePtr;
dataPtr;
stckPtr;

View File

@ -1,6 +1,2 @@
u32 x: 123;
u33 y: 5;
u3 *o = 5000;
u3 z = *o;
u3 p = *(o + z);

View File

@ -2,8 +2,7 @@ u16 x: 5;
loop {
u16* y = 257;
u9 w = -4;
u16 p = *y;
u4 z = p + 3;
u4 z = 3 + *y;
u2 o = -w;
if(x != 0) {

View File

@ -1,9 +0,0 @@
u8 a;
loop {
a = 3;
u8 b = 1;
u8 c = 2;
}

View File

@ -1,5 +1,5 @@
u8 a = 5;
if(a != 0) {
if(a) {
u8 a = 10; /* Should not cause scoping errors. */
}
u8 b = 15; /* `a` in the if statement scope should be free'd. */